УДК 629.7.08

СТРУКТУРНАЯ СХЕМА КОНТУРА РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ОХЛАЖДАЕМОГО ПОТОКА

В. А. ЛОЗОВСКИЙ, К. К. КРАМНИК, О. А. ПЛИГОВКА Учреждение образования «БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ АВИАЦИИ» Минск, Беларусь

Как правило, при синтезе контура регулирования температуры для объекта любой природы, исходят из анализа следующего известного выражения теплового потока:

$$Q_{T}=C_{p}*G*(T_{1}-T_{2}),$$
 (1)

где C_P — удельная теплоемкость охлаждающего потока; G — расход охлаждающего потока; T_I — среднее значение температуры охлаждаемого потока; T_2 — среднее значение температуры охлаждающего потока.

Величина Q_T определяется двумя свободными переменными: расходом и температурой охлаждающего потока.

В схеме самолетных систем кондиционирования воздуха (СКВ) обязательным элементом является влагоотделитель (ВО). Он предназначен для отделения капельной и мелкодисперсной влаги от охлаждаемого потока, поступающего на кондиционирование герметичной кабины и отсеков с техническим оборудованием. Если указанную процедуру не проводить, то в кабине экипажа может образоваться туман, произойти запотевание фонаря кабины и, как следствие, уменьшится безопасность выполнения полетного задания. Но чтобы охлаждаемый поток на входе в ВО на определенных режимах полета не приобрел отрицательного значения температуры, при которой свободная влага претерпевая фазовое превращение (образуется снег или лед) и может нарушать механическую прочность ВО, его необходимо регулировать. Из уравнения (1) следует, что для нашей задачи целесообразно выбрать в качестве управляющей переменной расход охлаждающего потока, поскольку он исключает возможность прямого контакта теплоносителей. В этих условиях регулируемым участком, на котором непосредственно происходит процесс регулирования, целесообразно выбрать теплообменник.

Охлаждаемый тепловой поток – это газ, обогащенный азотом, со следующими параметрами:

- процентное содержание азота до 94 %;
- температура − 60...100 °C;
- точка росы минус 70 °С при давлении 200 кгс/см²;
- pacxoд до 290 м³/ч;
- давление -7 кгс/см 2 .

Теплообменник (TO) — газо-воздушный, противоточный, одноходовый. Тип — «труба в трубе». Эта схема выбрана авторами, исходя из простоты ее технической реализации. Охлаждающий поток в ТО — холодный воздух, который отбирается от станции. Его параметры:

- температура − 148 К (-125 °C);
- давление -6 кгс/см²;
- максимальный расход (расчетный) $-50 \text{ м}^3/\text{ч}$;
- точка росы минус 70 °C при давлении 200 кгс/см².

Естественно, при работе мембранного блока в комплекте с адсорбционной установкой разделения атмосферного воздуха, как тип ТО так и хладоноситель может быть выбран другим.

Принцип работы регуляторов температуры известен и нет необходимости его здесь приводить. Укажем лишь на их недостаточно высокую надежность (как и у всех механизмов, имеющих много подвижных частей).

Предлагается в качестве регулятора температуры другая схема. Она отличается от обычной схемы прежде всего тем, что в нее включен элемент, обладающий эффектом памяти формы (ЭПФ).

Регулятор состоит из следующих основных узлов: электронного блока, включающего тепловой измерительный преобразователь, пружины с ЭПФ и системы из двух разгруженных по давлению клапанов (рис. 1).

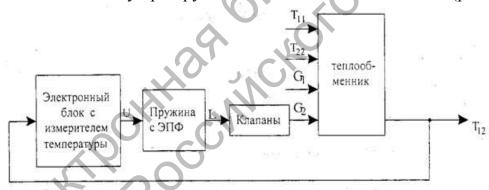


Рис. 1. Структурная схема контура регулирования температуры

Газ поступает в ТО через организованный вход с температурой T_{11} , а выходит из него с температурой T_{12} . Охлаждающий воздух с постоянной температурой $T_{22} = 148$ К подается на другой вход ТО и выходит с температурой T_{21} . Если $T_{12} = T_{3AД}$, то наблюдается установившийся режим работы регулятора. Нарушение этого равенства, вызываемое изменением T_{11} при действии возмущений, приводит к соответствующим изменениям параметров состояния электронного блока, длины L пружины с ЭПФ и расхода G_2 охлаждающего воздуха для восстановления исходного состояния.

Таким образом, предлагаемая структурная схема контура регулирования температуры обладает рядом преимуществ и является более эффективной и простой в применении.