УДК 621.791.763.2

РАЗРАБОТКА ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ ДЛЯ РЕЛЬЕФНОЙ СВАРКИ С АДАПТИВНЫМ РЕГУЛИРОВАНИЕМ МОЩНОСТИ НА БАЗЕ МАШИНЫ КОНТАКТНОЙ СВАРКИ

А. Д. МИХАЛЮТО Научный руководитель С. М. ФУРМАНОВ, канд. техн. наук, доц. Белорусско-Российский университет Могилев, Беларусь

Способы контактной сварки традиционно имеют большое распространение за счёт относительной долговечности оборудования, высокой степени автоматизации и низкой трудоемкости процесса. В связи с широкой распространенностью типов сварных соединений к их качеству, в особенности при контактной рельефной сварке, предъявляются высокие требования, которые заключаются в обеспечении механических свойств, герметичности, точности геометрических параметров соединений, а также эстетичности изделия.

Ранее был предложен способ адаптивного регулирования мощности при контактной рельефной сварке. Отличительной особенностью предлагаемого способа является то, что время подогрева $\tau_{\Pi O J}$, нарастания тока τ_H и протекания сварочного тока τ_{CB} жестко не фиксированы, а привязаны к перемещению подвижного электрода $h_{\ni \Pi}$, связанному с начальной высотой рельефа $h_{PE\Pi}$ и его дальнейшей деформацией в процессе сварки, что и определяет моменты переходов между этапами процесса.

Для качественного формирования сварных соединений при контактной рельефной сварке с обеспечением вышеперечисленных качественных характеристик и реализации способа с адаптивным регулированием мощности была разработана экспериментальная установка.

Разработанная установка монтировалась в контактную сварочную машину МТ-3201. Для обеспечения требуемого быстродействия отработки циклограммы сварки старый тиристорный контактор сварочной машины заменили тиристорным регулятором мощности ТРМ-1М-У. Применение тиристорного регулятора мощности ТРМ-1М-У позволяет с заданной точностью осуществлять корректировку параметров режима сварки в реальном времени, что является необходимым в связи с быстротечностью процесса протекания этапов процесса. В состав экспериментальной установки также входят: плата сбора данных типа NI USB, плата управления электропневмоклапанами привода сжатия электродов, блоки питания электропневмоклапанов и сварочный трансформатор. Подключение сигналов платы сбора данных и платы управления электропневмоклапанами осуществляется через клеммники сварочной машины.

Предлагаемая компоновка системы адаптивного регулирования процессом сварки позволяет модернизировать существующее оборудование для контактной сварки, причем большинство узлов контактной сварочной машины не претерпевают существенных изменений. Экспериментальная установка может найти дальнейшее широкое применение при модернизации оборудования.