УДК 621.9

ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ РЕАКЦИОННОГО МЕХАНИЧЕСКОГО ЛЕГИРОВАНИЯ ДЛЯ ПРОИЗВОДСТВА ПОРОШКОВ, ПРИМЕНЯЕМЫХ В ОБЛАСТИ АДДИТИВНОГО ПРОИЗВОДСТВА

А. С. ОЛЕНЦЕВИЧ Научный руководитель А. С. ФЕДОСЕНКО, канд. техн. наук, доц. Белорусско-Российский университет Могилев, Беларусь

Аддитивные технологии в машиностроении становятся все более востребованными благодаря своим преимуществам, наиболее существенно проявляющимся при создании сложных трехмерных объектов. Эти технологии позволяют уменьшить объем используемого материала, сокращая затраты на сырьё и ресурсы, а также минимизируют отходы и энергоёмкость процессов, что делает их более экономичными и экологичными [1]. Важное место в технологическом процессе аддитивного прозиводства занимают исходные материалы.

Среди используемых в настоящее время в передовых отраслях промышленности конструкционных материалов особый интерес представляют те, которые отличаются повышенным комплексом физико-механических свойств и эксплуатационных характеристик, в том числе способные работать в жестких температурно-силовых условиях. Зачастую эти материалы определяют ресурс эксплуатации ответственных узлов в авиационных и ракетных двигателях, энергетических турбинах, других машинах и оборудовании. Немаловажным требованием, предъявляемым к таким материалам, является и их высокая жаропрочность. Растущая потребность в них наблюдается и в сфере аддитивного производства.

В ближайшее время способы послойного синтеза металлических изделий по-прежнему будут оставаться весьма затратными, что во многом связано с высокой стоимостью и дефицитностью исходных материалов, позволяющих получать продукцию с высоким комплексом свойств. По этой причине внедрение новых технологий, позволяющих получать исходные материалы с требуемыми свойствами, обладающие при этом относительно невысокой стоимостью, останется в ближайшее время одной из наиболее актуальных задач в данной области.

Основным сырьем для производства изделий на основе металлов методами аддитивных технологий являются порошки, потребление которых составляет около 90 % от всех видов материалов, используемых в данной области. Вместе с тем следует отметить, что до настоящего времени изготовление металлических изделий, способных работать в сложных температурно-силовых условиях, в большинстве случаев остается эксклюзивным и затратным. Наряду с высокой стоимостью, сложностью и деффицитностью современных установок для производства исходных порошков, факторами, сдерживающими их широкое применение, являются определенные требования, предъявляемые к ним. В частности, их использование должно обеспечивать производство изделий,

отличающихся малой анизотропией свойств, мелкозернистой структурой, небольшими внутренними напряжениями, высокой твердостью и прочностью.

Одним из перспективных направлений, позволяющим решить проблему исходных материалов в области послойного синтеза для получения изделий с повышенным комплексом свойств, является применение механически легированных композиционных субмикрокристаллических комплексно-упрочненных порошков. Среди них перспективными являются порошки, содержащие термодинамически стабильные, тугоплавкие и имеющие высокое значение модуля сдвига фазы в виде оксидов, карбидов, боридов. Такие материалы относятся к жаропрочным и, благодаря комплексному упрочнению, обладают высокой прочностью и стабильностью свойств в широком интервале температур, верхнее значение которой может достигать $0.85T_{nл.основы}$. Зачастую данные свойства сохраняются при дальнейшей переработке в изделии.

В результате исследований, проведенных в Белорусско-Российском университете, была получена широкая гамма порошков на основе железа, алюминия и меди, часть из которых представлена в табл. 1.

Наименование порошковой композиции	Содержание легирующего элемента, %											
	Al	Fe	Si	Mg	Mn	Cu	Cr	Zn	Ni	Sn	Pb	С
АЛ8	89,5	_	_	10,5	_	_		_	_	_	_	_
AlSi10Mg	89,5		10	0,5	-	_			_	_	_	_
АК7Ц9	82,8		7	0,2	ĺ	ĺ		10	ĺ	_		_
Д16	93,3	ĺ	l	1,6	0,6	4,5	1	ĺ	l	_	ĺ	
B95	90		1	2,5	0,4	1,7	0,15	6	_	_	_	_
AH-2,5	97		1		ĺ				3,0	_	Ì	_
A09-2	87,25		1		ĺ	2,25	0,5		1	9	Ì	_
ОЦС 5-5-5	_		1		-	85		5		5	5	_
30X13	_	86,7	_		_	_	13	_	_	_	_	0,3
40X13	_	86,6		_		_	13		_	_		0,4
12X18H10	1	70	_	_	1	_	18		10	_		0,12

Табл. 1. Сплавы, полученные способом реакционного механического легирования

Исследования показали, что синтезируемые порошки после обработки в механореакторе в течение 6 ч и более состоят из частиц с формой, близкой к сферической (рис. 1 и 2), для которых характерно гомогенное распределение всех исходных компонентов (рис. 3).

Установлено, что морфология поверхности гранул наиболее существенно зависит от характеристик металла основы (железо, алюминий, медь) и в меньшей степени – от режимов механосинтеза.

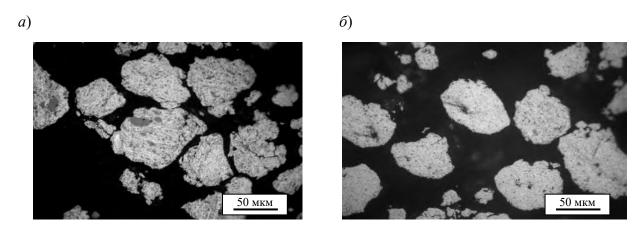


Рис. 1. Влияние длительности обработки на форму и микроструктуру частиц порошка Al – 10 % Si – 0.45 % Mg: a-6 ч; $\delta-8$ ч

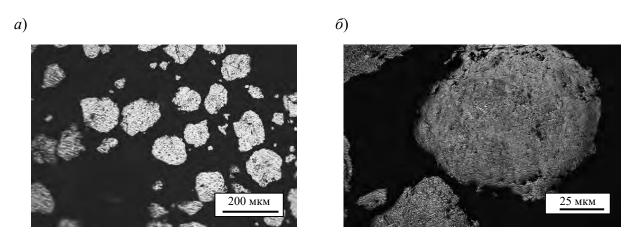


Рис. 2. Влияние длительности обработки на форму и микроструктуру частиц порошка АК7Ц9: время обработки – 6 ч

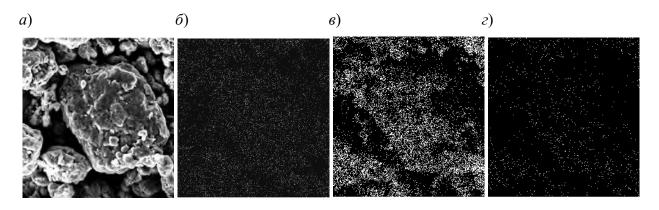


Рис. 3. Топография поверхности частиц порошка АЛ8 (СЭМ) и распределение интенсивности рентгеновского излучения основных элементов в них: a — топография поверхности частиц; δ — Al; s — Mg; ε — O

Изучено влияние режимов реакционного механического легирования на гранулометрический состав синтезируемых порошков как одну из важнейших технологических характеристик, влияющих на текучесть порошка, однородность формируемого слоя и его теплопроводность, качество печати и другие параметры процесса. В результате исследований установлены режимы механо-

синтеза, позволяющие получать порошки предпочтительного гранулометрического состава с размером частиц основной фракции не более 63 мкм.

С целью улучшения сыпучести порошков разработан способ дополнительной механической обработки, позволяющий удалить частицы-стеллиты с поверхности гранул и снизить общую рельефность их поверхности, что позволяет улучшить технологические характеристики материала.

Синтезированные механически легированные порошки были использованы для изготовления образцов способом селективного лазерного сплавления. Экперименты проводили на принтере EP-M250 (Shining 3D). В качестве базового порошка для исследования была выбрана композиция высоколегированной коррозионно-стойкой стали 12X18H10. С целью изучения микроструктуры и свойств материала, полученного послойной лазерной наплавкой, были изготовлены образцы размером $10 \times 10 \times 10$ мм (рис. 4).

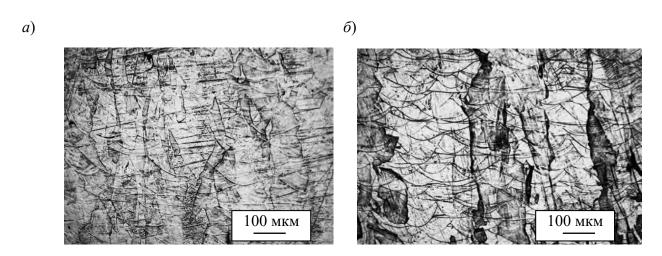


Рис. 4. Микроструктура образцов, полученных из серийного (a) и механически легированного (δ) порошков

В результате исследования образцов было установлено, что наиболее существенным отличием их от образцов из серийно выпускаемого порошка является меньший размер зерна. Так, размер кристаллов в поперечном сечении образцов из разработанного порошка в 2–2,5 раза меньше по сравнению с образцами из серийно выпускаемого. Изучение микротвердости после отжига позволило установить, что экспериментальные материалы сохраняют достаточно высокое ее значение даже в случае выдержки при высоких температурах, что свидетельствует об их жаропрочности.

Полученные результаты свидетельствуют о перспективности применения материалов, синтезируемых по технологии реакционного механического легирования, для использования в области производства изделий способами послойного синтеза.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. **Зленко, М. А.** Аддитивные технологии в машиностроении / М. А. Зленко, А. А. Попович, И. Н. Мутылина. – СПб. : Политехн. ун-т, 2013. – 222 с.