УДК 621.9

ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ ПРОТОКОЛОВ OSPF/BGP/MPLS В ПОЛЬЗОВАТЕЛЬСКОЙ СРЕДЕ: РЕАЛИЗАЦИЯ, ОГРАНИЧЕНИЯ И ПЕРСПЕКТИВЫ ИСПОЛЬЗОВАНИЯ

В. Э. ЛАРИОНОВ

Научный руководитель Д. Ю. ПОЛУКАРОВ, канд. техн. наук, доц. Самарский национальный исследовательский университет имени академика С. П. Королева Самара, Россия

Актуальность темы исследования обусловлена растущей необходимостью тестирования сетевых протоколов и поведения компьютерных сетей в условиях, приближенных к реальным, но без использования дорогостоящего оборудования или сложных симуляторов. Объектом исследования является логическая модель компьютерной сети; предметом — алгоритмы маршрутизации и имитации поведения протоколов OSPF, BGP и MPLS. Возможно реализовать упрощенную имитацию работы указанных протоколов в пользовательской программной среде (на языке Java или в среде OMNeT++) с сохранением ключевых характеристик их поведения, что пригодно для демонстрации, анализа и экспериментов.

Для формализации и наглядного представления алгоритмов, лежащих в основе исследуемых протоколов, в работе используются следующие математические модели.

1. Для OSPF применяется каноническая форма алгоритма Дейкстры, использование которого для построения дерева кратчайших путей прямо указано в спецификации OSPFv2 RFC 2328 [1–3]:

$$D_{i,j} = \min \{D_{i,j}, D_{i,k} + d_{k,j}\},\$$

где $D_{i,j}$ — текущая известная стоимость кратчайшего пути от узла i до узла j; $D_{i,k}$ — стоимость кратчайшего пути от исходного узла i до промежуточного узла k; $d_{k,j}$ — стоимость прямого ребра между узлами k и j.

2. Логика выбора маршрута BGP, детально описанная в RFC 4271 (раздел 9.1) [4, 5], для целей данной модели обобщена в виде функции взвешенной суммы ключевых атрибутов:

$$R_b = \arg\min_{r \in R} \sum_i p_i \cdot m_i(r)$$
,

где R — множество доступных маршрутов; $m_i(r)$ — значение i-й метрики (например, длина AS-path, задержка, стоимость) для маршрута r; p_i — вес или приоритет метрики i.

3. Принцип работы MPLS, описанный в RFC 3031 (разделы 2, 3) [6], формализован в виде функций переключения меток, отражающей ядро механизма работы LSR (Label Switching Router):

$$f_{out} = M(f_{in}, L),$$

где f_{in} — входящий пакет; L — метка (label), присвоенная пакету; M — функция переключения, которая определяет, какой исходящий интерфейс использовать и какую метку назначить следующему узлу.

Цель работы — создать программную среду, имитирующую основные принципы работы протоколов OSPF, BGP и MPLS, и определить, насколько такая среда может быть применима для образовательных и исследовательских целей. Методы исследования включают теоретический анализ источников, синтез моделей, программную реализацию, моделирование отказов, сравнительный анализ поведения при различных настройках.

Практическая значимость работы заключается в возможности использовать полученную имитационную среду для обучения студентов, быстрой верификации сетевых сценариев и визуализации принципов работы протоколов без привлечения специализированного оборудования. Основное содержание работы охватывает реализацию базового функционала протоколов OSPF, BGP, MPLS. В системе каждый узел обладает ограниченной видимостью и автономной логикой выбора маршрута, что приближает модель к децентрализованной архитектуре настоящих сетей.

Перспективы продолжения работы включают реализацию QoS-механизмов, расширение модели до уровня трафиковых нагрузок и интеграцию с GNS3 для гибридного моделирования.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. OSPF Version 2// RFC. URL: https://www.rfc-editor.org/rfc/rfc2328.html#page-161 (date of access: 20.07.2025).
- 2. **Dijkstra**, **E. W.** A note on two problems in connexion with graphs / E. W. Dijkstra // Edsger Wybe Dijkstra: his life, work, and legacy. 2022. P. 287–290.
- 3. **Medhi, D.** Network routing: algorithms, protocols, and architectures / D. Medhi, K. Ramasamy // Morgan kaufmann. 2017.
- 4. A Border Gateway Protocol 4 (BGP-4) // RFC. URL: https://www.rfc-editor.org/rfc/rfc4271.html#section-9.1 (date of access: 20.07.2025).
- 5. **Gurney, A. J. T.** Neighbor-specific BGP: An algebraic exploration / A. J. T. Gurney, T. G. Griffin // The 18th IEEE International Conference on Network Protocols. IEEE, 2010. P. 103–112.
- 6. Multiprotocol Label Switching Architecture // RFC. URL: https://www.rfc-editor.org/rfc/rfc3031.html (date of access: 20.07.2025).