РАЗРАБОТКА СИСТЕМЫ УПРАВЛЕНИЯ РОБОТИЗИРОВАННЫМ МАНИПУЛЯТОРОМ ДЛЯ МЕЛКОСЕРИЙНОГО ПРОИЗВОДСТВА

А. В. КОЗЛОВ, А. А. АЗАРЕНКОВА

Научный руководитель Д. В. ГОНЧАРОВ, канд. техн. наук, доц. Белгородский государственный национальный исследовательский университет Белгород, Россия

Изложена методика и результаты разработки модульной программно-аппаратной системы (ПАС) управления манипулятором (конфигурируемо 3...6 DOF) для мелкосерийного производства. Описаны требования, структура системы, реализация прототипа на Python и демонстрационный GUI с 2D-визуализацией. Включены решения по ограничению скоростей/ускорений траекторий, аналитическая/численная обратная кинематика, PID-контроллеры, аппаратный интерфейс и меры безопасности (ограничения по положению, аварийная остановка).

Цель и практическая значимость. Создать экономичную, модульную и расширяемую ПАС, обеспечивающую быструю перенастройку сборочных операций, сокращение времени переналадки и повышение повторяемости технологических операций при минимальной стоимости внедрения.

Необходимо обеспечить: конфигурируемую механическую структуру 3...6 DOF; траекторию с ограничениями утах и атах (линейные и трапецеидальные профили, разбиение на точки управления); алгоритмы прямой и обратной кинематики (аналитические для типовых конфигураций и численные для общего случая); замыкание по позиции/скорости через PID (анти-винд-ап, ограничение выходов); аппаратный интерфейс (Serial/CAN/Ethernet); GUI для задания задач, мониторинга и логирования; поддержка unit-tests и эмуляции HAL [1].

Модульная структура: модуль кинематики (параметры DH, проверка зон достижимости) — планировщик траекторий (линейный/трапециевидный профиль, ограничение jerk при необходимости) — контроллеры (позиционные/скоростные PID, каскадные схемы) — HAL (драйверы Serial/CAN/Ethernet, адаптеры приводов, буферизация, синхронизация времени) — GUI/визуализация (задание точек, параметры, мониторинг, логирование). Прототип GUI демонстрирует вкладки, панель управления позой и 2D-вид манипулятора (рис. 1).

Базовая реализация на Python; ключевые библиотеки: numpy, scipy, pyserial, python-can, sockets/asyncio, PyQt5/Tkinter, matplotlib; тестирование — pytest/unittest, mock. Для критичных по скорости участков возможен перенос в C/C++ (Cython) или выделение RT-контроллера [2, 3].

Валидация и результаты. Имитационные сценарии: P2P-перемещения, проверка сходимости IK, устойчивость регуляторов при возмущениях.

Результаты (i7, Python 3.10): планирование 100 точек -8...25 ms (\approx 12 ms); решение IK на точку -0.5...4.0 ms; RMS ошибка (симуляция) \approx 0.2...0,8 мм (практически ожидаемо 0.5...2,0 мм при учете приводов). PID с периодом 1...10 ms стабилен; при >20 ms требуются компенсации.

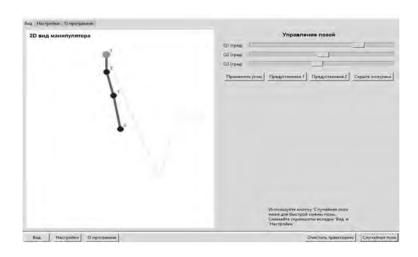


Рис. 1. Интерфейс приложения

Включены программные лимиты положений и скоростей, аварийная остановка и проверка корректности команд на уровне HAL; реализованы средства мониторинга состояния приводов и обнаружения перегрузок. При интеграции с реальным оборудованием рекомендуется использовать аппаратные блоки безопасности и проводить сертификацию [4].

Таким образом, модульная ПАС обеспечивает быструю переналадку и простую интеграцию с промышленными интерфейсами; Python ускоряет разработку и прототипирование, но для жестких задач в реальном времени целесообразна гибридная схема с выделением низкоуровневого контроля на RT-платформе. В дальнейшем планируется интеграция систем машинного зрения для адаптивного позиционирования, внедрение адаптивных и обучаемых регуляторов, а также проведение всесторонней проверки и сертификации на реальном оборудовании.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. **Жиленков, А. А.** Возможности и ограничения современных манипуляционных роботов в решении прикладных задач / А. А. Жиленков, А. А. Саенко, Х. Йе // Известия Тульского государственного университета. Технические науки. 2023. № 4. С. 86–91.
- 2. **Крахмалев, О. Н**. Математическое моделирование динамики манипуляционных роботов / О. Н. Крахмалев // В мире научных открытий. -2012. -№ 8-1. C. 51-59.
- 3. **Кулаков, Ф. М.** Кинематические модели манипуляционных роботов / Ф. М. Кулаков, Г. В. Алфёров, А. С. Шарлай // Потенциал современной науки. 2014. № 2. С. 37–41.
- 4. **Кулаков, Ф. М.** Кинематический анализ исполнительной системы манипуляционных роботов / Ф. М. Кулаков, Г. В. Алфёров, О. А. Малафеев // Проблемы механики и управления. Нелинейные динамические системы. -2014. -№ 46. - C. 31–38.