УДК 678

ВЛИЯНИЕ СТРУКТУРЫ ЗАМЕСТИТЕЛЯ N-АРИЛЗАМЕЩЕННЫХ КАМФАН-2 И ФЕНХАН-2 АМИНОВ НА СТАБИЛИЗАЦИЮ ЭЛАСТОМЕРОВ НА ОСНОВЕ ИЗОПРЕНОВОГО КАУЧУКА

Е. В. КОНДРАТЬЕВ, И. А. СЛОБОДКИН Научный руководитель А. Н. ГАЙДАДИН, канд. техн. наук, доц. Волгоградский государственный технический университет Волгоград, Россия

Эластомеры, включая изопреновый каучук (СКИ), широко применяются в производстве шин, уплотнителей, медицинских изделий. Для СКИ наиболее выражено термоокислительное старение, которое приводит к разрушению структуры, вследствие чего – к потере механических свойств, эластичности и химической стойкости.

Полученные на основе камфоры и фенхона ароматические амины могут проявлять стабилизирующий эффект для резин, аналогичный известным аминным стабилизаторам, таким как N-фенил-β-нафтиламин (Heoson Д) и нафтам 2-фенил-2-нафтиламин (IPPD). В исследовании проводится анализ влияния структуры стабилизатора на основе камфоры или фенхона на изменение характеристик вулканизации и твердости образцов после термического старения (рис. 1, табл. 1 и 2).

Рис. 1. Объекты исследования: A=1,7,7-Триметил-N-фенилбицикло[2.2.1] гептан-2-амин; B=1,3,3-Триметил-N-фенилбицикло[2.2.1] гептан-2-амин; B=1,7,7-Триметил-N-(4-метоксифенил) бицикло[2.2.1] гептан-2-амин; $\Gamma=1,3,3$ -Триметил-N-(4-метоксифенил) бицикло[2.2.1] гептан-2-амин; $\Gamma=1,3,3$ -Триметил-N-(4-метоксифенил-В-(4-метоксифен

Табл. 1. Вулканизационные характеристики резиновых смесей при температуре 140 °C

Шифр исследуемой смеси	М∠, дН∙м	Мн, дН∙м	ΔM , д ${ m H}\cdot{ m M}$	<i>t</i> s1, мин	t'90, мин
СКИ-0	1,09	13,20	12,11	6,40	18,68
СКИ-А	0,80	12,52	11,72	6,71	18,79
СКИ-Б	0,73	11,98	11,25	6,15	18,14
СКИ-В	0,77	12,27	11,5	6,33	17,79
СКИ-Г	0,74	12,33	11,59	6,66	18,59
СКИ-Д	0,86	12,55	11,69	6,63	18,47
СКИ-Е	0,81	12,77	11,96	6,08	17,59
СКИ-Ж	0,79	12,81	12,02	4,21	15,40

Табл. 2. Значения твердости для всех смесей, состаренных при разных режимах

	Твердость по Шору A								
Образец на основе	До старения	Режим старения							
		72 ч, 80 °C	168 ч, 80 °C	72 ч, 100 °C	168 ч, 100 °C	24 ч, 120 °C	72 ч, 120 °C		
СКИ-0	55,75	53,75	52,5	51,75	50,5	45,25	42,5		
СКИ-А	55,75	55	53,75	52,75	51,5	46,5	44		
СКИ-Б	54,25	53,75	53,5	52,75	52,25	46,75	45,25		
СКИ-В	53,75	53,75	53,5	54,75	52,75	47,5	45,25		
СКИ-Г	53,75	53,25	53	54,25	52,5	45,25	45,25		
СКИ-Д	56,25	53,5	55	51,5	50,5	45,25	44,5		
СКИ-Е	56,25	54,25	54	53,5	51,75	47,5	45,75		
СКИ-Ж	55,25	54,75	53,5	54	52,5	47,25	45,75		

Резиновая смесь СКИ-0 является базовой, СКИ-А (см. рис. 1, соединение А), СКИ-Б (соединение Б), СКИ-В (соединение В), СКИ-Г (соединение Г), СКИ-Д (соединение Д), СКИ-Е (соединение Е), СКИ-Ж (соединение Ж).

Для температуры 140 °C заметно уменьшение минимального и максимального крутящего момента относительно базовой смеси и уменьшение разности между максимальным и минимальным крутящим моментом. Время подвулканизации увеличивается в смесях СКИ-А, СКИ-Г, СКИ-Д и уменьшается в смесях СКИ-Б, СКИ-В, СКИ-Е, СКИ-Ж. Время, за которое крутящий момент достигает 90 % от максимального, увеличивается во всех случаях, кроме СКИ-Ж.

Согласно полученным результатам, при введении соединений с метокси- и этоксизаместителями достигается более выраженный стабилизирующий эффект.