УДК 628.31

СОВМЕСТНОЕ ПРИМЕНЕНИЕ НЕФЕЛИНОВОГО КОНЦЕНТРАТА И ПЫЛИ ЭЛЕКТРОСТАЛЕПЛАВИЛЬНЫХ ПЕЧЕЙ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ФТОРИДОВ

Ю. Д. ПЕРЕСУНЬКО, Н. Е. КРУЧИНИНА

Российский химико-технологический университет имени Д. И. Менделеева Москва, Россия

Утилизация крупнотоннажных отходов горнометаллургического комплекса представляет собой одну из наиболее важных задач для промышленной экологии. В качестве наиболее ярких примеров «отходов» можно отметить нефелиновый концентрат (НК), образующийся при получении апатитового концентрата, и пыль газоочистки выбросов электросталеплавильных печей (ПЭСПП). К сожалению, данные отходы не нашли широкого практического применения и в настоящее время продолжают накапливаться в отвалах и шламонакопителях, что, в свою очередь, приводит к отчуждению территорий, пылению и загрязнению грунтовых вод [1].

В то же время ввиду особенностей ряда технологических процессов (получение экстракционной фосфорной кислоты, выплавка алюминия и др.) остро стоит проблема очистки сточных вод, содержащих высокие концентрации фторид-ионов (5...10 г/дм³), характеризуемых крайне низкими значениями рН.

Возможным решением вышеуказанных проблем является использование данных отходов в качестве реагентов-осадителей для удаления фторид-ионов из сточных вод [2]. Целью работы является оценка эффективности и возможности совместного применения НК и ПЭСПП для нейтрализации и очистки кислых фторсодержащих сточных вод.

В качестве реагентов использовали НК и пыль ЭСПП. Нефелиновый концентрат представляет собой материал с высоким содержанием алюминиевой составляющий (до 29 % в пересчете на Al_2O_3) [3]. Пыль электросталеплавильного производства состоит преимущественно из соединений кальция, алюминия и железа (в пересчете на оксиды CaO до 18,07 %, Al_2O_3 до 18,44 %, Fe_2O_3 до 0,25 %). Оба отхода за счет высокого содержания оксидов способны образовывать нерастворимые соединения с загрязняющими веществами, в частности, фторид-ионами.

В качестве объекта исследования использовали сточные воды с содержанием фторид-ионов $5,1\,$ г/дм 3 , образующиеся в результате абсорбционной очистки газовых выбросов при производстве фосфорной кислоты экстракционным способом.

Введение реагентов осуществляли в различных массовых соотношениях НК: ПЭСПП, варьируя дозу смеси от 1 до $10\, {\rm г/дm^3}$. Время контакта сточной воды и смеси реагентов составляло $10\,$ мин. Содержание фторид-ионов определяли с использованием ион-селективного электрода ЭЛИС-131F. Результаты эксперимента представлены в табл. 1.

		Доза реагента, г/дм ³									
Соотношение	1	2	3	4	5	6	7	8	9	10	
	Эффективность дефторирования сточной воды, %										
НК	96,1	97,1	97,9	98,5	98,9	98,9	98,9	98,9	98,9	98,9	
ПЭСПП	97,5	98,6	99,4	99,7	99,7	99,9	99,9	99,9	99,9	99,9	
1:4 (НК:ПЭСПП)	97,2	98,6	99,3	99,6	99,7	99,8	99,8	99,8	99,8	99,8	
1:2 (НК:ПЭСПП)	97,7	98,9	99,4	99,6	99,8	99,8	99,8	99,8	99,8	99,8	
1:1 (НК:ПЭСПП)	96,8	97,8	98,7	99,1	99,4	99,4	99,4	99,4	99,4	99,4	
2:1 (НК:ПЭСПП)	96,4	97,4	98,2	98,8	99,1	99,2	99,2	99,2	99,2	99,2	
4:1 (НК:ПЭСПП)	96,2	97,2	98,0	98,6	99,0	99,0	99,0	99,0	99,0	99,0	

Табл. 1. Эффективности очистки в зависимости от дозы реагента

Из данных, представленных в табл. 1, видно, что как индивидуальное применение отходов, так и их смеси позволяет с высокой эффективностью осаждать фторид-ионы. Индивидуальное применение НК в качестве дефторирующего реагента недостаточно эффективно, а увеличение дозы НК не приводит к существенному снижению остаточных количеств фторид-ионов, что, вероятнее всего, обусловлено предельной сорбционной емкостью материала и процессами стабилизации системы за счет коллоидных форм кремниевой кислоты [3, 4].

Индивидуальное использование пыли ЭСПП демонстрирует большую эффективность удаления фторид-ионов (99,9 %) при дозе 6 г/дм³, при этом остаточное содержание составило 3,4 мг/дм³. Однако, несмотря на высокую эффективность дефторирования, было отмечено резкое повышение рН до 12. Данное явление приводит к необходимости введения дополнительной стадии нейтрализации системы после процесса дефторирования и, как следствие, повышению общей минерализации очищенной воды.

Совместное применение реагентов при массовом соотношении НК:ПЭСПП, равном 1:2, и дозе смеси 5 г/дм 3 позволило достичь синергетического эффекта: частичное растворение нефелина в кислой среде с образованием нерастворимых AlF $_3$ и CaF $_2$ с параллельным корректированием pH среды до pH 8,0...8,5 за счет содержания CaO в ЭСПП. Параллельно происходит процесс сорбции фторидионов на поверхности гидроксокомплексов алюминия.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. **Кузин, Е. Н.** Бруситсодержащие отходы производства огнеупорных материалов в процессах очистки сточных вод / Е. Н. Кузин, Н. Е. Кручинина // Стекло и керамика. -2022. Т. 95, № 7 (1135). С. 58-63.
- 2. **Kuzin, E. N.** Titanium-containing coagulants for foundry wastewater treatment / E. N. Kuzin, N. E. Kruchinina // CIS Iron and Steel Review. 2020. Vol. 20. P. 66–69.
- 3. **Кузин, Е. Н.** Получение отвержденных форм алюмокремниевого коагулянта и их использование в процессах водоочистки и водоподготовки / Е. Н. Кузин // Цветные металлы. -2016. -№ 10. -C. 8-13.
- 4. **Shabanova**, **N. A.** The chemistry and technology of nanodispersed oxides: Learner's guide / N. A. Shabanova, V. V. Popov, P. D. Sarkisov. M.: Akademkniga, 2007. 309 p.