УДК 691.327.3

НЕКОТОРЫЕ ОСОБЕННОСТИ СТРУКТУРЫ БЕТОНОВ НА ПОРИСТЫХ ЗАПОЛНИТЕЛЯХ

И. И. МЕЛЬЯНЦОВА Белорусско-Российский университет Могилев, Беларусь

Известна классификация следующих типов структур для бетонов: микроструктура, мезоструктура и макроструктура. Микроструктура, характеризуя структуру цементной матрицы, практически одинакова для бетонов нормального веса и легких бетонов, поскольку на ее формирование не оказывает влияния вид мелкого и крупного заполнителя. Мезоструктура цементно-песчаного раствора в различных видах бетонов обусловлена свойствами мелкого заполнителя. Макроструктура легкого бетона схожа с мезоструктурой, если рассматривать ее с точки зрения цементно-песчаной матрицы с включенным в нее крупным пористым заполнителем. Особенности мезо- и макроструктуры легких бетонов сводятся к наличию пор не только в цементном камне, но и в крупном пористом заполнителе, что уменьшает количество дефектов в контактной зоне. Бетон при этом становится более трещиностойким. Наличие капиллярно-пористой структуры в цементном камне и крупном заполнителе способствует миграции воды в сам заполнитель и из него. В этой связи во многих исследованиях говорят о двухкомпонентной пористой системе, только при равных условиях пористость цементного камня в легких бетонах будет иной, чем в бетонах нормального веса. Меньшее соотношение между прочностью цементного камня и пористого заполнителя, по сравнению с плотным заполнителем в бетонах нормального веса, определяет более равномерное распределение напряжений от внешних воздействий в легких бетонах.

Важной особенностью структуры бетонов на пористых заполнителях является повышенное сцепление заполнителя и цементной матрицы. Это обусловлено тем, что при твердении в поры крупного заполнителя, помимо влаги, проникают также частицы цемента, обеспечивающие высокую степень сцепления, которая в легких бетонах в 1,7—2,5 раза выше, чем в бетонах нормального веса. Также при затворении легкобетонной смеси из-за разницы в коэффициенте линейного расширения происходит обжатие зерен заполнителя растворной составляющей. Обратная миграция воды из зерен заполнителя при твердении бетона усиливает процессы гидратации, включая дополнительно непрогидратированные зерна цементного клинкера, тем самым увеличивая прочность контактной зоны и формируя мелкопористую структуру, влияющую на долговечность легких бетонов [1]. Высокое сцепление предопределяет и механизм разрушения легких бетонов: по растворной матрице и контактной зоне либо по заполнителю и растворной матрице.

Формирование структуры легкого бетона неизбежно связано со структурой крупного заполнителя, которая имеет ряд особенностей. Это и наличие внутренних напряжений, образующихся в процессе охлаждения при производстве, и наличие неизбежных разрывов в перегородках между порами [2]. Керамзитовый гравий при обжиге покрывается плотной коркой-оболочкой, внутренняя же составляющая гранул, ввиду значительного количества пор, имеет пониженную прочность. При равномерном обжатии заполнителя растворной составляющей эта оболочка, воспринимая внешнее обжатие, разгружает малопрочное ядро [3]. Значения внутренних напряжений находятся в прямой зависимости от размера зерна заполнителя и в то же время увеличиваются при неправильной его форме. Это подтверждается экспериментальными исследованиями М. 3. Симонова, В. Г. Довжика и др.

И. А. Иванов для контроля структуры, с точки зрения деформативности, предложил использовать показатель $E_p \, / \, E_{\it san}$, т. е. отношения модуля деформаций цементного раствора и заполнителя. При этом отмечена необходимость сближения величин этих показателей для снижения концентрации напряжений, но не достижения их равенства. Значение данного показателя как оптимального принято считать в пределах 1,5...3. Данный критерий регулирует такие свойства бетона, как модуль деформаций, мера ползучести, коэффициент поперечной деформации, параметрические точки диаграммы деформирования, т. е. служит показателем неравномерности распределения напряжений в структуре бетона. Использование описанного критерия позволит обеспечивать заданные параметры бетона и его свойства и может являться одним из направлений повышения эффективности легких бетонов.

Таким образом, понятие «структура» представляется как взаимосвязь составных частей, их влияние друг на друга. Поэтому и описанная совокупность свойств крупного заполнителя с цементным камнем по мере затворения, твердения и эксплуатации бетона, а также рецептурно-технологические факторы могут служить предпосылками для получения легких бетонов с технико-экономическими показателями, не уступающими бетонам нормального веса.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Физико-механические характеристики конструкционного керамзитобетона в практике современного строительства / П. В. Кривицкий, Е. В. Шелест, А. А. Невдах, Т. Н. Седляр // Вестник Гродненского государственного университета имени Янки Купалы. Серия 6. Техника. -2024. Т. 14, № 1. С. 35–43.
- 2. **Максимова, И. Н.** Технологические особенности формирования структуры и свойств конструкционных легких бетонов / И. Н. Максимова, Н. И. Макридин // Региональная архитектура и строительство. -2012. -№ 2. C. 45-48.
- 3. **Галдина, В. Д.** Особенности структуры и свойств керамзита и керамзитобетона / В. Д. Галдина, М. С. Сатюк // Архитектурно-строительный и дорожно-транспортный комплексы: проблемы, перспективы, инновации : материалы VIII Междунар. науч.-практ. конф., Омск, 23–24 нояб. 2023 г. Омск: СибАДИ, 2023. С. 516–519.