УДК 691.175

СРАВНЕНИЕ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ПЛАСТИКОВ ДЛЯ 3D-ПЕЧАТИ

М. А. ШКИЛЬНЮК, Н. В. БОНДАРЕВ, А. А. ГЕРАЩЕНКО Белорусско-Российский университет Могилев, Беларусь

Широкое внедрение аддитивных технологий в промышленное производство актуализирует проблему рационального выбора материалов, эксплуатационные характеристики которых детерминируют потребительские свойства готовой продукции [1]. Многообразие существующих полимерных композиций, обладающих уникальными комплексами механических, термических и технологических параметров, обусловливает необходимость проведения системного сравнительного исследования. Целью работы является комплексный анализ ключевых типов пластиков, используемых в FDM-печати, с последующей разработкой практических рекомендаций по их применению в зависимости от целевых эксплуатационных требований и технических задач.

В работе проводится детальное изучение и сравнение следующих наиболее распространенных и технологически значимых полимеров.

ABS (акрилонитрилбутадиенстирол) — представляет собой ударопрочный технический термопластик, широко применяемый в FDM-печати.

PLA (полилактид) – биоразлагаемый полимер, производимый из возобновляемых ресурсов, что делает его экологически безопасным вариантом.

PETG (полиэтилентерефталатгликоль) — модифицированный полиэфир, характеризующийся повышенной прочностью и устойчивостью к ультрафиолетовому излучению.

SBS (стирол-бутадиен-стирол) – гибкий и ударопрочный материал, рассматриваемый как альтернатива ABS-пластику.

FLEX/TPE/TPU (термопластичные полиуретаны и эластомеры) – группа материалов с повышенной эластичностью и гибкостью, подходящая для создания деформационных элементов.

RUBBER (синтетические каучуки) — эластичные материалы, имитирующие свойства натуральной резины, с высокой степенью упругости и возможностью многократной деформации.

Каждый материал оценивается по комплексу параметров, включая прочностные характеристики, температурную стойкость, гибкость, устойчивость к воздействию окружающей среды и технологичность печати.

Результаты сравнения технических характеристик пластиков представлены в табл. 1.

На основе полученных данных можно сделать следующие выводы.

1. Создание специализированного инструмента и оснастки.

РЕТС и ABS благодаря высокой прочности на изгиб (76,1 и 41,0 МПа) и термостойкости идеально подходят для изготовления прочных строительных лекал, кондукторов, элементов опалубки и технологической оснастки.

Табл. 1. Сравнение технических характеристик пластиков

Техническая	Наименование пластиков					
характеристика	ABS	PLA	PETG	SBS	FLEX	RUBBER
Температура эксплуатации, °C	-40 +80	-20 +40	-40 +70	-80 +65	-100 +100	-40 +85
Температура стеклования, °С	105	6065	80	8095	_	_
Температура плавления, °С	220	180	222225	190210	200210	230240
Температура размягчения, °С	~103	~50	80	76	110	_
Прочность на изгиб, МПа	41,0	55,3	76,1	36,0	5,3	3,4
Прочность на разрыв, МПа	22,0	57,8	36,5	34,0	17,5	_
Прочность на сжатие, МПа	49,3	_	_	_	7,6	2,3
Плотность, г/ см ³	1,05	1,25	1,27	1,01	1,10	0,95
Твердость по Шору, D	_	_	_	68	40	60
Твердость по Роквеллу, R	112	7090	106	118	_	_
Вязкость по Изоду, кДж/м²	25,0	_	_	3,5	_	25,0
Точность печати, %	±1,0	±0,1	±0,1	±0,4	±1,0	_
Влагопоглощение, %	0,45	0,5050,00	0,12	0,07	0,04	_
Относительное удлинение при разрыве, %	6	4	50	250	600	500

Низкое влагопоглощение SBS (0.07 %) позволяет использовать его для производства измерительного инструмента, эксплуатирующегося в условиях переменной влажности.

2. Производство функциональных элементов зданий.

ABS с его ударной вязкостью (25,0 кДж/м²) перспективен для создания защитных коробов, розеток, выключателей и других электроустановочных изделий.

РЕТС с УФ-стабильностью может применяться для наружных элементов декора, светорассеивающих конструкций.

3. Изготовление инженерных систем.

FLEX и RUBBER с эластичностью до 600 % открывают возможности для производства уплотнителей, демпфирующих прокладок, виброизолирующих элементов.

4. Прототипирование и архитектурное моделирование.

PLA с высокой точностью печати $(\pm 0,1\%)$ идеален для создания детализированных архитектурных макетов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. **Леденева, И. Н.** Технологии 3D-печати: принципы, возможности, перспективы: учеб. пособие / И. Н. Леденева, О. А. Белицкая. – М.: РГУ им. А. Н. Косыгина, 2019. – 161 с.