ИССЛЕДОВАНИЕ ПРОЦЕССА АДДИТИВНОГО ПРОИЗВОДСТВА

Ю. А. УЛАНОВА, А. А. БУРАКОВА

Научный руководитель А. П. ПРЕОБРАЖЕНСКИЙ, д-р техн. наук, проф. Воронежский институт высоких технологий Воронеж, Россия

Одним из главных параметров, который рассматривается в аддитивном производстве, является процент прочности. Он зависит от того, какая будет скорость печати, а также от коэффициента подачи пластика. То, насколько указанный параметр будет являться неустойчивым, можно сделать выводы на основе реализации запланированных видов испытаний [1].

В связи с этим процент прочности рассматриваемых объектов в аддитивном производстве может анализироваться в виде признака стабильности [2]. Прогнозируемым параметром предлагается считать относительное изменение процента прочности во времени α . Отметим, что априорная информация применяется для того, чтобы определить его граничное значение. При этом будем рассматривать минимальное значение вероятности ошибочных решений исходя из заданного критерия. Риск $P(K_2|\text{реш }K_1)$ рассматриваем как соответствующий критерий. Будем считать, что есть класс K_1 (годные объекты) и класс K_2 (дефектные объекты). Принимаем решения по тому, чтобы включить объекты в класс K_1 – их будет $n(\text{реш }K_1)$ и в класс K_2 – их будет $n(\text{реш }K_2)$. В таком случае расчет суммарного числа решений происходит как

$$n$$
(реш K_1) + n (реш K_2) = n .

Тогда риск будет соответствовать условной вероятности того, что в ходе экспериментальных исследований получим реализацию, соответствующую классу K_2 , которая дефектна при том, что принимаем решение по ее соответствию классу K_1 .

После этого происходит расчет оценок вероятностей ошибочных решений и априорных вероятностей:

– риск потребителя

$$P(K_2|\text{peш}K_1) = \frac{n(K_2|\text{peш}K_1)}{n(\text{peш}K_1)};$$

риск изготовителя

$$P(K_1|\text{peш}K_2) = \frac{n(K_1|\text{peш}K_2)}{n(\text{peш}K_2)};$$

– условные вероятности принятия ошибочных решений:

$$P(\text{реш}K_1|K_2) = \frac{n(\text{реш}K_1|K_2)}{n(K_2)};$$
 $P(\text{реш}K_2|K_1) = \frac{n(\text{реш}K_2|K_1)}{n(K_1)};$

– вероятность ошибки

$$P_{\text{ош}} = \frac{n(\text{реш}K_1|K_2) + n(\text{реш}K_2|K_1)}{n}.$$

В ходе исследований необходимо определить оптимальное значение [3] прочности рассматриваемых объектов в аддитивном производстве, которое позволит получить минимальную вероятность ошибки $P_{\rm om}$ при температуре экструдера для печати 255 °C.

На основе испытания партии случайным образом выбранных объектов аддитивного производства была получена выборка по проценту прочности и коэффициенту α . Используя такую выборку, сформировали поле корреляции, на ней были выделены четыре области: І – область K_1 (годных объектов); ІІ – область (K_2 |реш K_1); ІІІ – область K_2 (дефектных объектов); ІV – область (K_1 |реш K_2).

Был осуществлен эксперимент при $n_1 = 4$, $n_2 = 30$. Тогда получили $P_{\text{ош}} = 0.346$, когда определено пороговое значение PP = 0.9.

Сформировали зависимость $P_{\text{ош}} = f(PP)$ с тем, чтобы найти оптимальное значение для $P_{\text{ош}}$ (рис. 1).

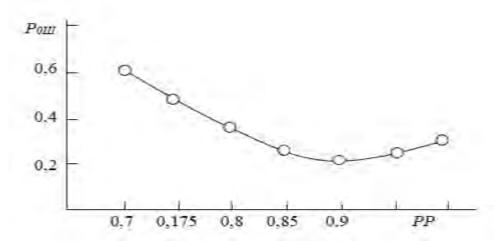


Рис. 1. Зависимость $P_{\text{ош}}$ от PP

Это осуществлялось в ходе варьирования α , т. е. значения PP=0,9; $P_{\text{ош}}=0,245$ получаются в ходе того, как анализируется зависимость $P_{\text{ош}}$ от PP (см. рис. 1).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Проблемы аналитического контроля в литейном и аддитивном производстве / Д. Н. Козлова, А. П. Преображенский, Н. М. Токарева, В. В. Шунулина // Вестник Воронежского института высоких технологий. -2022. № 3 (42). С. 21-23.
- 2. Разработка автоматизированной системы поддержки принятия решений при технологической подготовке аддитивного производства / И. А. Александров, А. П. Титова, М. С. Михайлов, Н. З. Иванов // Инженерный вестник Дона. 2024. № 10 (118). С. 217–229.
- 3. **Соколов, Ю. А.** Оптимизация аддитивного производства / Ю. А. Соколов // Металлообработка. -2018. -№ 5 (107). C. 48–54.