УДК 744.4:004.92

УПРАВЛЕНИЕ ПРОЦЕССОМ УСВОЕНИЯ ЗНАНИЙ

В.М. Акулич, канд. техн. наук, доцент

Белорусско-Российский университет, г. Могилев, Республика Беларусь

Ключевые слова: инженерная графика, проекционное черчение, изображения, виды, разрезы, сечения, тестирование, компьютерная графика, Компас-3D

Аннотация. В статье рассматривается методический подход к управлению процессом усвоения знаний по инженерной графике. Разработаны тесты по проекционному черчению с использованием компьютерной графики и объемного 3D-моделирования в программе «Компас-3D».

Инженерная подготовка студентов направлена на получение технических знаний, выработку умений и приобретению устойчивых навыков разработки и чтения конструкторской документации. При этом точность и рациональность построения изображений влияет на качество выполнения чертежей.

Освоению проекционного черчения и управлению самостоятельной работой студентов способствует поэтапное изучение дисциплины «Инженерная графика» (рисунок 1).

Рисунок 1. Этапы изучения дисциплины

Полученные знания на лекционных занятиях, освоенные умения и навыки по общим правилам выполнения чертежей

студенты применяют при графическом проектировании, которое охватывает геометрическое, проекционное и машиностроительное черчение [1].

Для формирования конструкторско-технических навыков необходимо развивать у студентов пространственное воображение, что учитывалось при создании комплекса дидактических материалов, содержательной основы комплексных задач, разработке методики их применения в учебном процессе [2].

Для полного погружения в процесс изучения данного раздела инженерной графики разработаны и выполнены с помощью системы трехмерного проектирования Компас-3D индивидуальные графические задания (рисунок 2) [3, 4].

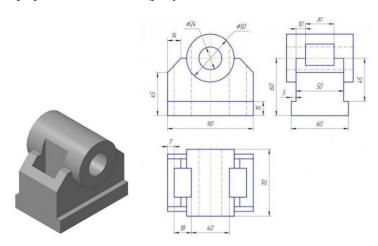


Рисунок 2. 3D-модель детали и комплексный чертеж детали

Важной частью учебного процесса являются различные средства обучения для поэтапного контроля знаний и графического способа передачи информации. По этой причине важно при индивидуальной работе со студентами так организовать их аудиторную и самостоятельную работу, чтобы регулярное использование контроля знаний обеспечивало понимание изучаемого материала, давало возможность для самопроверки на всех

этапах работы, качественно и объективно оценивало знания с учетом уровня подготовки студента.

Для организации контроля проверки знаний по усвоению студентами стандартов единой системы конструкторской документации ЕСКД по теме «Изображения, виды, разрезы, сечения» в системе Компас-3D были разработаны два вида тестов в виде карт программированного контроля.

В *первом виде теста* для каждой карты разработаны по четыре вопроса с ответами, представляющими собой графические задания. Например, необходимо по двум заданным проекциям (главного вида и вида сверху) определить соответствие одного из вариантов третьей проекции (вида слева) (рисунок 3).

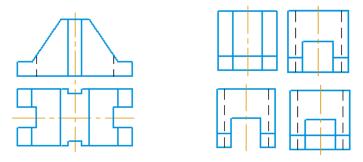


Рисунок 3. Вариант задания и четыре варианта ответов

Подобные тесты выполняют несколько функций: выявляют уровень подготовки студентов по проекционному черчению; помогают обучающемуся систематизировать полученные на лекциях знания; показывают, какому положению студент должен уделить дополнительное внимание. Все это позволяет индивидуально контролировать учебный процесс.

Так как доля тестирования в структуре учебного занятия занимает мало времени, для лучшего усвоения теоретического материала целесообразно использовать пяти- или десятиминутные тесты программированного контроля знаний (в зависимости от сложности и объема графического наполнения), которые предлагается выполнить студентам в начале занятий.

Необходимая часть учебного процесса – повторение и анализ полученной информации. Умение анализировать поможет формированию образных представлений о технических деталях у обучающихся.

Второй вид теста определяет соответствие комплексных и аксонометрических проекций.

Карта содержит вопрос с аксонометрическими изображениями деталей в изометрической проекции с ответами — четыре варианта изображений двух видов (вида спереди и вида сверху) (рисунок 4).

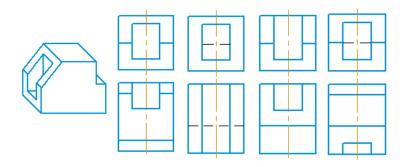


Рисунок 4. Вариант задания и варианты ответов

Своевременное тестирования способствует организации оперативного контроля теоретических знаний на всех этапах обучения, индивидуальной подготовке студентов к выполнению графических работ, предупреждению и уменьшению типовых ошибок при графическом проектировании.

Разработка различных карт программированного контроля по проекционному черчению, их рациональное и системное использование на занятиях способствуют управлению процессом усвоения знаний, получению умений и навыков в графической подготовке студентов, формированию у них базовых и ключевых компетенций, что определяет эффективность обучения.

Список литературы

- 1. Чекмарев, А. А. Инженерная графика. Машиностроительное черчение: учебник / А. А. Чекмарев. Москва: Инфра-М, 2021. 396 с.
- 2. Инженерная графика: метод. рекомендации к практическим занятиям для студентов направления подготовки 15.03.06 «Мехатроника и робототехника» очной формы бучения / сост. В. М. Акулич. Могилев: Белорус.-Рос. ун-т, 2024. 29 с.
- 3. Прикладные программы для компьютерной графики и 3D-моделирования: метод. рекомендации к лабораторным работам для студентов направлений подготовки 15.03.01 «Машиностроение» и 15.03.06 «Мехатроника и робототехника» очной формы обучения / сост. Ж. В. Рымкевич, О. А. Воробьева. Могилев: Белорус.-Рос. ун-т, 2022. 48 с.
- 4. Инженерная графика: метод. рекомендации к лабораторным занятиям для студентов направления подготовки 15.03.06 «Мехатроника и робототехника» очной формы бучения / сост. В. М. Акулич. Могилев: Белорус.-Рос. ун-т, 2024. 48 с.

УДК 004.925.84

ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРИ ИЗУЧЕНИИ ДИСЦИПЛИН ИНЖЕНЕРНО-ГРАФИЧЕСКОГО ЦИКЛА

О.А. Акулова, канд. техн. наук,

П.В. Кривицкий, канд. техн. наук, доцент,

Н.В. Усс, ассистент,

П.А. Макаревич, студент,

И.В. Ткачук, магистрант

Брестский государственный технический университет, г. Брест, Республика Беларусь

Ключевые слова: геометрическое моделирование, системы автоматизированного проектирования, визуализация, информационное моделирование, олимпиада по геометрическому компьютерному моделированию

Аннотация. Всеобщая цифровизация строительной отрасли требует от высшей школы совершенствования и развития инженерно-графической подготовки будущих специалистов. Ее основой является геометрическое компьютерное моделирование, которое, с одной стороны, опирается на методы начер-