УДК 621.791.763.2

А.О. Сергейчик, Д.Н. Юманов, А.Д. Михалюто

(МОУ ВО «Белорусско-Российский университет», г. Могилёв, Беларусь) Научный руководитель — С.М. Фурманов

РАЗРАБОТКА ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ НА БАЗЕ КОНТАКТНОЙ СВАРОЧНОЙ МАШИНЫ СИСТЕМЫ АДАПТИВНОГО РЕГУЛИРОВАНИЯ МОЩНОСТИ ПРИ РЕЛЬЕФНОЙ СВАРКЕ

В статье представлен принцип разработки и основные узлы экспериментальной установки на базе контактной сварочной машины для реализации способа адаптивного регулирования мощности при контактной рельефной сварке. Необходимость модернизации сварочных машин заключается в проблематичности контактных качественных Т-образных сварных соединений получения «втулка + пластина» на стандартном оборудовании для рельефной сварки – машины серии МТ 3201 и регулятора сварочных процессов РКС-801. Сущность процесса адаптивного управления заключается в регулировании цикла сварки по задаваемой циклограмме.

Способы контактной сварки традиционно имеют большое распространение на постсоветском пространстве за счёт относительной долговечности оборудования, высокой степени автоматизации и низкой трудоемкости процесса. В связи с широкой распространенностью типов сварных соединений, к их качеству, в особенности при контактной рельефной сварке, предъявляются высокие требования. Описывают данные требования совокупность таких характеристик как механические свойства, герметичность, точность геометрических параметров соединений, а также эстетичность изделия.

В исследованиях процесса контактной рельефной сварки Т-образных соединений при помощи способов математического моделирования определено, что за короткий промежуток времени происходит резкий нагрев металла в области контактирования сварных деталей, который может привести к появлению выплеска и соответственно к дефектам [1]. Серийное оборудование для управления циклом контактной сварки работает по жестким алгоритмам задания параметров режима, что не позволяет осуществлять их регулировку в процессе сварки. Одним из

способов решения данной проблемы является применение систем программного управления, которые позволяют более гибко и точно задавать основные параметры режимов сварки.

Ранее предложен способ адаптивного регулирования мощности при контактной рельефной сварке. Отличительной особенностью предлагаемого способа является то, что время подогрева $\tau_{\Pi O J}$, нарастания τ_H и действия сварочного тока τ_{CB} жестко не фиксированы, а привязаны к перемещению подвижного электрода $h_{\ni J}$, связанному с начальной высотой рельефа h_{PEJ} и его дальнейшей деформацией в процессе сварки, что и определяет моменты переходов между этапами процесса.

Для качественного формирования сварных соединений при контактной рельефной сварке с обеспечением вышеперечисленных качественных характеристик и реализации способа с адаптивным регулированием мощности была разработана экспериментальная установка для, которая представлена на рисунке 1 [2].

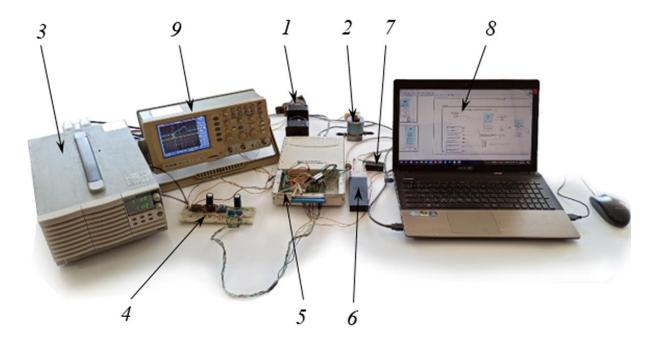


Рисунок 1 – Система адаптивного регулирования мощности при рельефной сварке

В состав системы адаптивного регулирования (САР) входят следующие компоненты: 1 — электропневмоклапан малых усилий; 2 — электропневмоклапан больших усилий; источник питания — 3; монтажная плата включения электропневмоклапанов — 4; 5 — плата сбора данных NI USB 6251; датчик линейных перемещений ЛИР-17 — 6;

7 — кнопка пуска; LedTop с программной средой LabView — 8; осциллограф — 9 [3].

Разработанная САР подключалась в узлы контактной сварочной машины МТ-3201. Для обеспечения требуемого быстродействия отработки циклограммы сварки, тиристорный контактор сварочной машины заменяется тиристорным регулятором мощности ТРМ-1М-У. Применение тиристорного регулятора мощности ТРМ-1М-У также позволяет с заданной точностью осуществлять корректировку параметров режима сварки в реальном времени, что является необходимым, в связи с быстротечностью процесса протекания этапов процесса.

На рисунке 2 показана экспериментальная установка для контактной рельефной сварки с адаптивным регулированием мощности на базе контактной сварочной машины серии MT-3201.

Рисунок 2 — Контактная машина с внедрением системы адаптивного регулирования мощности

Экспериментальная установка состоит из следующих узлов: 1 — тиристорный регулятор мощности TPM-1M-У; 2 — клеммная колодка подключения платы сбора данных NI USB сварочной машине; 3 — блоки питания электропневмоклапанов; 4 — плата управления электропневмоклапанами привода сжатия электродов; 5 — клеммный блок подключения регулятора цикла сварки РКС-801; 6 — сварочный трансформатор.

Предлагаемая компоновка системы адаптивного регулирования процессом сварки позволяет модернизировать существующее оборудование для контактной сварки, причем большинство узлов контактной сварочной машины не претерпевают существенных изменений. Управление процессом сварки при помощи компьютерной системы расширяет возможности точного задания параметров режима сварки, что благоприятно отражается на качестве сварных соединений. Стоит отметить, что система адаптивного управления позволяет за короткий промежуток зарегистрировать и отработать отклонения от заданных значений режимов сварки.

Таким образом, предлагаемая экспериментальная установка может найти дальнейшее применение при модернизации оборудования для контактной сварки с целью повышения качества получаемых сварных соединений.

Список использованных источников:

- 1. Юманов, Д. Н. Методика определения критерия образования качественных Т-образных соединений при контактной рельефной сварке с помощью математического моделирования / Д. Н. Юманов, С. М. Фурманов, А. Н. Юманова // Наука и техника. 2025. Т. 24, № 1. С. 24—32.
- 2. Разработка программных средств системы адаптивного регулирования мощности в процессе рельефной сварки / С. М. Фурманов [и др.] // Вестник Белорусско-Российского университета. 2024. № 3 (84). С. 72—80.
- 3. Разработка аппаратных средств адаптивного регулирования мощности в процессе рельефной сварки / С. М. Фурманов [и др.] // Вестник Белорусско-Российского университета. 2024. № 2 (83). С. 88-95.

The article presents the principle of development and the main components of an experimental rig based on a contact welding machine for implementing a

method of adaptive power control during projection welding. The need to modernize contact welding machines lies in the problematic nature of obtaining high-quality T-shaped welded joints of the «sleeve + plate» type on standard equipment for projection welding - the MT 3201 series machine and the RKS-801 welding process regulator. The essence of the adaptive control process is to regulate the welding cycle according to a preset cyclogram.

Сведения об авторах:

Сергейчик Антон Олегович, МОУ ВО «Белорусско-Российский университет», машиностроительный факультет, аспирант 1-го года обучения;

Юманов Дмитрий Николаевич, МОУ ВО «Белорусско-Российский университет», машиностроительный факультет, доцент кафедры «Оборудование и технология сварочного производства», кандидат технических наук;

Михалюто Антон Денисович, МОУ ВО «Белорусско-Российский университет», машиностроительный факультет, студент, специальность «Оборудование и технология сварочного производства», 3 курс.

Сведения о научном руководителе:

Фурманов Сергей Михайлович, МОУ ВО «Белорусско-Российский университет», машиностроительный факультет, доцент кафедры «Оборудование и технология сварочного производства», кандидат технических наук, доцент.