УДК 574:579.083+581.133

Альхимович М. В., студентка; Павелко Е. А., лицеист СИСТЕМА «РАСТЕНИЯ – МИКРООРГАНИЗМЫ» КАК ОСНО-ВА ДЛЯ ВОССТАНОВЛЕНИЯ ТЕХНОГЕННО ПОВРЕЖДЕНных территорий

Научный руководитель — **Шур А. В.,** канд. с.-х. наук, доцент ГУВПО «Белорусско-Российский университет», Могилев, Республика Беларусь

Введение. Нефть и нефтепродукты, поступая в окружающую среду, оказывают негативное влияние на все компоненты экосистем. Нефтяное загрязнение почв приводит к выведению обширных территорий из сельскохозяйственного использования.

Естественное восстановление плодородия почв, загрязненных нефтяными углеводородами, занимает длительный период. Попытки рекультивации нарушенных почв только физико-химическими методами зачастую не дают желаемых результатов. В настоящее время наиболее популярными являются методы, основанные на использовании объе-Sello Pych диненного метаболического потенциала микроорганизмов и растений.

Фиторемедиация представляет собой использование растений и микроорганизмов для очистки окружающей среды. Фиторемедиация является высокоэффективной технологией очистки от ряда органических и неорганических поллютантов. Основное достоинство фиторемедиации — ее низкая стоимость, а недостаток — большая продолжительность. Этот путь привлекателен использованием природного процесса биологического круговорота, полным исключением механических инженерно-мелиоративных мероприятий и какого-либо химического воздействия на почву.

Для обезвреживания ядовитых органических веществ, попадающих в окружающую среду, давно используют различные микроорганизмы. Зеленые растения способны извлекать из окружающей среды и концентрировать в своих тканях различные элементы [1, 2].

Цель работы – изучить возможности восстановления техногенно поврежденных почв с помощью методов фиторемедиации.

Материалы и методика исследования. Кафедра безопасности жизнедеятельности совместно с Государственным научным учреждением «Институт микробиологии НАН» разрабатывает технологию биологической фиторемедиации загрязненных нефтепродуктами почв с помощью специально выведенных микроорганизмов.

В данном опыте (табл. 1) обработка микробиологическими препаратами проводилась перед посевом семян люцерны. Учеты урожайности и биометрических показателей проведены при уборке растительных образцов.

№ п/п	Вариант эксперимента
1	Контроль без применения препаратов
2	Контроль с обработкой Sinorhizobium meliloti S3
3 🕳	Контроль с обработкой Sinorhizobium meliloti S3 + Serratia plymuthica 57
4	Внесение отработанного машинного масла 1 л при обработке Sinorhizobium meliloti S3
5	Внесение отработанного машинного масла 1 л при обработке Sinorhizobium meliloti S3 + Serratia plymuthica 57
6	Внесение отработанного машинного масла 3 л при обработке Sinorhizobium meliloti S3

Таблица 1. Схема опыта

Результаты исследования и их обсуждение. Результаты изучения урожайности и биометрических показателей люцерны по вариантам опыта приведены в табл. 2.

Таблица 2. Урожайность и показатели биометрии люцерны

№ п/п	Вариант эксперимента	Урожай- ность зеленой массы, г/м ²	Высота, см,	Число стеблей, шт.	Число листьев на 1 растение, шт.	Число цветков на 1 рас- тение, шт.
1	Контроль без препарата	393	103	32	1036	24
2	Контроль с обработкой Sinorhizobium meliloti S3	1283	122,3	16	634	25
3	Контроль с обработкой Sinorhizobium meliloti S3 + Serratia plymuthica 57	572	159	20	602	52
4	Отработанное машинное масло 1 л при обработке Sinorhizobium meliloti S3	19	86,3	3	53	0
5	Отработанное машинное масло 1 л при обработке Sinorhizobium meliloti S3 + Serratia plymuthica 57	68	73	9	137	1
6	Отработанное машинное масло 3 л при обработке Sinorhizobium meliloti S3	265	101,3	IT	430	2

Применение препаратов Sinorhizobium meliloti S3 и Sinorhizobium meliloti S3 + Serratia plymuthica 57 привело к росту урожайности по сравнению с контролем без обработки препаратом. В эксперименте с внесением в почву отработанного машинного масла применение указанных препаратов позволило получить рост урожайности культуры по сравнению с контролем без препарата, но в то же время наблюдалось снижение по отношению к контролю с обработкой соответствующим препаратом. Применение препаратов Sinorhizobium meliloti S3 и Sinorhizobium meliloti S3 + Serratia plymuthica 57 привело к увеличению высоты растений, числа стеблей и числа цветков.

По результатам нашего опыта можно сделать вывод о том, что применение препаратов Sinorhizobium meliloti S3 и Sinorhizobium meliloti S3 + Serratia plymuthica 57 оказало наиболее эффективное действие на рост и развитие растений, а также снизило токсическую нагрузку нефтепродуктов на растения.

Заключение. Технологии фиторемедиации являются современным и наиболее эффективным способом восстановления техногенно поврежденных земель и снижения уровня их загрязнения антропогенными поллютантами.

литература

- 1. Особенности распределения и физиологического состояния микроорганизмов нефтешлама отхода нефтехимического производства / Е. В. Никитина, О. И. Якушева, С. А. Зарипов, Р. А. Галиев, А. В. Гарусов, Р. П. Наумова // Микробиология. 2003. Т. 72. № 5. С. 699–706.
- 2. Белоусов, В. С. Обоснование и разработка биотехнологических приемов реабилитации экологически неблагоприятных ландшафтов / В. С. Белоусов, А. А. Швец // Наука Кубани. 2007, приложение. С. 53–56.