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Введение 
 
Цель преподавания дисциплины – сформировать у студентов основные 

знания и умения по расчету типового элемента конструкций (бруса) на проч-
ность, жесткость и устойчивость, по выбору конструкционных материалов и 
форм поперечных сечений, обеспечивающих требуемые показатели надежно-
сти, безопасности и экономичности сооружений. 

Студенты специальности 6-05-0722-05 «Производство изделий на основе 
трехмерных технологий» изучают дисциплину «Механика материалов и кон-
струкций» на протяжении 3-го и 4-го семестров. Методические рекомендации 
выполнены в объеме практических занятий 3-го семестра. 

По каждой теме практических занятий в методических рекомендациях 
приводится один или более примеров с подробным решением. Далее следуют 
вопросы для самопроверки в форме тестовых заданий.  

Методические рекомендации помогут сформировать у студентов компе-
тенции: 

‒ владеть основами исследовательской деятельности, осуществлять поиск, 
анализ и синтез информации; 

‒ быть способным к саморазвитию и совершенствованию в профессио-
нальной деятельности; 

‒ проявлять инициативу и адаптироваться к изменениям в профессиональ-
ной деятельности; 

‒ выбирать конструктивные материалы и формы элементов конструкций, 
расчетные схемы, производить расчеты технических конструкций и их элемен-
тов на прочность, устойчивость, жесткость. 

Перед практическим занятием студентам предлагается изучить материал те-
мы по конспекту лекций и рекомендуемой литературе [1–11], разобрать решение 
приведенных типовых примеров и проработать материал для самопроверки. 
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1 Геометрические характеристики поперечных сечений. 
Определение центра тяжести составного сечения 

 
Пример – Определить координату 

центра тяжести составного сечения отно-
сительно оси у. Размеры сечения на ри-
сунке 1.1 даны в миллиметрах. 

  

Рисунок 1.1 
 

Решение 
 

Положение центров тяжести прямо-
угольника и круга с координатами отно-
сительно оси у указано на рисунке 1.1. 
Площади отдельных фигур 

 
2

1 4 8 32 см  A ; 
 

2 2
2 3,14 1,5 7,065 см  A . 

 
Координата  хс определяется по формуле 
 

1 1 2 2

1 2

( 4) 32 ( 5,5) 7,065
3,57 см

32 7,065
Y

c

S x A x A
х

A A A

       
    

 



. 

 
Тестовые вопросы и задачи для самопроверки 

 
1 Координата центра тяжести треугольника 

относительно указанных осей: 
а) 1 см;
б) 2 см;
в) 2 см;
г) 3 см.

c

c

c

c

x
x
x
x



 


 

2 В каком ответе дано правильное значе-
ние координаты центра тяжести сечения хс: 

а) 0 см;
б) 1 3 см;
в) 1 3 см;
г) 2 3 см.

c

c

c

c

x
x
x
x


 


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3 По какой формуле определяется статиче-
ский момент простого сечения площадью А от-
носительно произвольной оси у:  

 

а) ;
б) ;
в) ;
г) .

у с

у с

у с

у с

S х А
S у А
S х А
S у А

 
 



 

4 По какой формуле определя-
ется координата центра тяжести 
составного поперечного сечения 
относительно оси х: 

а) y
c

S
x

A
 


;           в) x
c

S
x

A
 


;

б) y
c

S
y

A
 


;          г) .x
c

S
y

A
 


 
2 Моменты инерции простых сечений относительно  

центральных осей. Использование таблиц сортамента 
 
Пример 1 – Определить осевые мо-

менты инерции сечения относительно цен-
тральных осей х и у. Размеры сечения на 
рисунке 2.1 даны в миллиметрах. 

  

 

Рисунок 2.1 

Решение 
 

Определим осевые моменты инерции 
сечения относительно центральных осей:

 
3

46 3
4,5 см

36xI


  ; 

 
3

43 6
18 см

36yI


  . 

 
Пример 2 – Определить осевые и по-

лярный моменты инерции сечения относи-
тельно центральных осей х и у. Размеры се-
чения на рисунке 2.2 даны в миллиметрах. 

  

 

 

Рисунок 2.2 

Решение 
 

Определим осевые моменты инерции 
сечения относительно центральных осей: 

 
4

43,14 4
12,56 см

64x yI I


   . 
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Определим полярный момент инерции: 
 

4
43,14 4

25,12 см
32

I


  . 

 
Тестовые вопросы и задачи для самопроверки 
 

1 В каком ответе дано 
правильное значение осевого 
момента инерции сечения 
относительно оси у:  

 

4

4

4

4

а) 24 см ;
б) 8 см ;
в) 10,7 см ;
г) 18 см .

у

у

у

у

I
I
I
I






 

2 Укажите правильное 
значение центробежного 
момента инерции круглого 
поперечного сечения отно-
сительно указанных осей:  

 

4

4

4

4

а) 0 см ;
б) 8 см ;
в) 24 см ;
г) 24 см .

ху

ху

ху

ху

I
I
I
I


   
   
  

3 В каком ответе дано 
правильное значение осевого 
момента инерции для двутав-
ра № 10 относительно оси х:  

 

4

4

4

4

а) 198 см ;
б) 39,7 см ;
в) 17,9 см ;
г) 6,49 см .

x

x

x

x

I
I
I
I






 

 
 
3 Определение моментов инерции простых сечений при  

параллельном переносе и повороте осей. Главные центральные  
оси и моменты инерции поперечного сечения 

 
Пример – Определить осевые момен-

ты инерции поперечного сечения (рису-
нок 3.1) относительно указанных осей х 
и у. Размеры сечения на рисунке 3.1 даны 
в миллиметрах. 

 

Рисунок 3.1 

Решение 
 
По рисунку видно, что заданная ось х 

и центральная ось хс совпадают, а между 
вертикальными осями у и ус есть межосе-
вое расстояние b. 
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Моменты инерции 
 
3

49 6
40,5 см

48


  

cx xI I ; 

 
3

2 2 46 9 6 9
3 354,5 см

36 2

 
      

cy yI I b A . 

 
Тестовые вопросы и задачи для самопроверки 
 

1 В каком ответе дано 
правильное значение осевого 
момента инерции сечения от-
носительно оси у:  

 

4

4

4

4

а) 32 см ;
б) 58 см ;
в) 56 см ;
г) 54 см .

у

у

у

у

I
I
I
I






 

2 Укажите правильное 
значение центробежного мо-
мента инерции круглого по-
перечного сечения относи-
тельно указанных осей:  

 

4

4

4

4

а) 0 см ;
б) 8 см ;
в) 24 см ;
г) 24 см .

ху

ху

ху

ху

I
I
I
I


   
   
  

 

 

3 Какое утверждение 
может быть верно для глав-
ных центральных осей х и у: 

 
 

max min

а) > 0, < 0;
б) = , = ;
в) = 0, = 0;
г) = 0.

х у

х у

х у

х у

I I
I I I I
I I
I + I

 

4 Оси х и у являются 
главными центральными, ес-
ли …: 

 
 

а) Ixy = 0, Sx = 0, Sy = 0; 
б) Ixy = 0; 
в) Sx = 0, Sy = 0; 
г) Sx  = Sy. 

5 Ось симметрии поперечного сечения является ...: 
а) всегда главной, но не всегда центральной осью; 
б) всегда центральной, но не всегда главной осью; 
в) всегда главной центральной осью; 
г) не всегда центральной осью. 

 
6 Угол для определения положения главных центральных осей инерции 

определяется по формуле: 
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а)  
21

arctg
2

xy
o

x y

I

I I


  


;          в)  arctg xy

o
x y

I

I I
 


; 

б)  
21

arctg
2

xy
o

x y

I

I I


   


;       г)  

21
arctg

2
xy

o
y x

I

I I


   


. 

 
 
4 Определение геометрических характеристик в составных 

сечениях и сечениях сложной формы  
 
Пример – Для заданного сечения (рисунок 4.1) определить положение 

главных центральных осей и вычислить значения главных центральных момен-
тов инерции. Размеры сечения даны в миллиметрах. 

 

 
 

Рисунок 4.1 
 
Решение 
 

Определим собственные геометрические характеристики фигур.  
Прямоугольники:  

2
1 3 10 1,4 14 см   A А ; 

 

1 3

3
41,4 10

116,7 см
12


  x xI I ;    

1 3

3
410 1,4

2,3 см
12


  у уI I . 
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Для швеллера из таблиц ГОСТ 8240–97, с учетом горизонтального распо-
ложения фигуры, 

 

2 2

2 4 4
2 010,9 см ; 20,4 см ; 174 см ; 10 см; 1,44 см    x уA I I h z . 

 
В данном сечении ось у является осью симметрии (главной центральной 

осью инерции), поэтому центр тяжести всего сечения расположен на этой оси. 
Определим его координату ус относительно оси хнач:  

 

1 1 2 2 3 3

1 2 3

5 14 1,44 10,9 5 14
4 см

14 10,9 14

         
  

   c

у А у А у А
у

А А А
, 

 
где у1, у2, у3 – координаты центров тяжести прямоугольников и швеллера отно-
сительно начальной оси хнач  (см. рисунок 4.1). 

Через найденный центр тяжести проводим вторую главную центральную 
ось инерции сечения – х. 

Расстояния между главными центральными осями всего сечения и цен-
тральными осями отдельных фигур  

 

1 3 1 2 25 4 1 см; 4 1, 44 2,56 смс сс с у у с у у           ; 
 

1 3 2

1,4 10
5,7 см; 0

2 2
    d d d . 

 
Определим главные центральные моменты инерции сечения относительно 

осей ху по следующим формулам: 
 

1 2

2 2
1 1 2 2

2 2 4

( ) 2 ( )

(116,7 1 14) 2 (20,4 2,56 10,9) 353,2 см ;

x x xI I c А I c А       

       
 

 

1 2

2 2
1 1 2 2

2 4

( ) 2 ( )

(2,3 5,7 14) 2 (174 0 10,9) 1088,3 см .

у у yI I d А I d А       

       
 

 
Так как Iх = Imin, а Iу = Imax, то ось у проходит через плоскость максималь-

ной жесткости сечения, а ось х  – минимальной. 
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Тестовые вопросы и задачи для самопроверки 
 

1 В каком ответе дано правильное зна-
чение статического момента сечения отно-
сительно оси х: 

3 3

3 3
а) 0 см ; в) 4 см ;
б) 44 см ; г) 52 см .

х х

х х

S S
S S

 
 

 

2 По какой формуле определяется мо-
мент инерции Ix указанного поперечного се-
чения: 

 

а) 
3 4

12 64


 x

hb d
I ; 

б) 
3 4

12 64


 x

bh d
I ; 

в) 
3 4

12 64


 x

bh d
I ; 

г) 
3 4

36 64


 x

bh d
I . 

 
 
5 Определение внутренних сил в статически определимых 

системах. Метод сечений 
 
Пример – Определить величину внутренних силовых факторов в сече- 

нии С прямолинейного бруса (рисунок 5.1). 
 

 
Рисунок 5.1 
 
Решение 
 
Покажем расчетную схему (рисунок 5.2, а). 
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Рисунок 5.2 
 
Для решения задачи используем метод сечений: мысленно рассечем брус 

по искомому сечению С и рассмотрим равновесие его правой части (рису- 
нок 5.2, б). Для определения всех внутренних усилий составим шесть уравне-
ний статического равновесия: 

 
0; 0;xX Q   

 

2 20; 0; 3 кН;y yY Q F Q F      

 

1 10; 0; 8 кН;Z N F N F       

 

2 20; 1 0; 1 3 4 7кН м;C
x x xM M F m M F m             

 
0; 0;C

y yM M   

 

кр0; 0.C
z zM M M    

 
Тестовые вопросы и задачи для самопроверки 
 
1 Метод, позволяющий определить внутренние усилия в сечении стержня: 

а) метод сил;             в) метод независимости действия сил; 
б) метод сечений;     г) метод начальных. 

 
2 Сколько всего существует внутренних силовых факторов: 

а) три;                    в) пять; 
б) четыре;             г) шесть. 
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3 Чему равна поперечная сила Qy 
в сечении С: 

а) 3 кН; в) 6 кН;
б) 2 кН; г) 7 кН.

у у

у у

Q Q
Q Q

 
  

 

4 Чему равен изгибающий момент 
Мх в сечении С: 

а) 3 кН м;
б) 7 кН м;
в) 10 кН м;
г) 1 кН м.

х

х

х

х

М
М
М
М

 
 
 
 

 
 

 
6 Построение эпюр внутренних силовых факторов  

в прямолинейном брусе 
 
Пример – Стальной брус (рисунок 6.1) площадью поперечного сече- 

ния А = 50 см2 сжимается силой F = 300 Н. Удельный вес материала 
378 кН/м  . Построить эпюру продольных сил N с учетом собственного  

веса бруса. 
 

 
 
Рисунок 6.1 

 
Решение 
 

Построение эпюры продольных сил N:  
 

3 4300 78 10 50 10 300 390                N F A z z z ; 
 

0; 300 Hz N   ; 
 

1 м; 90 Hz N  . 
 

  



 14

Тестовые вопросы и задачи для самопроверки 
 

1 Для стержня, изображенного 
на рисунке, эпюра продольных 
сил N будет иметь вид: 

 

2 Для стержня, схема которого 
изображена на рисунке, продольная 
сила, действующая в сечении 1–1, 
будет: 

а) растягивающей; 
б) сжимающей; 
в) сдвигающей; 
г) равна нулю. 

  

3 Укажите верное правило 
знаков для продольной силы N: 

 
 
4 Если N > 0, то участок стержня: 

а) сжат;                в) растянут; 
б) изогнут;           г) испытывает сдвиг. 

 
7 Определение внутренних сил в статически определимых 

балках при поперечном изгибе 
 
Пример – Для балки, изображенной на рисунке 7.1, построить эпюры по-

перечных сил Q и изгибающих моментов M. 
 
Решение 
 

Определение реакций на опорах: 
 

3 1,5 2 6 5 0;         A BМ q q R  
(10 3 1,5 10 2 6)

33 кH
5

    
 BR ; 

 

5 3 3,5 2 1 0         B AМ R q q ; 
(10 3 3,5 10 2 1)

17 кH
5

    
 AR . 
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Рисунок 7.1 

 
Построение эпюр поперечных сил и изгибающих моментов. 
Участок I: 10 3 м. z  

1 117 10     AQ R q z z ; 
2

21
1 1 117 5

2
      A

z
М R z q z z ; 

 

1 0;z  17 кHQ ; 0;M  
 

1 3 м;z  13кH Q ; 2М 17 3 5 3 6 кН м      . 
 

Исследование на экстремум: 
 

117 10 0;   Q z  1 1,7 мz ;  
 

217 1, 7 5 1, 7 14, 45 кН мэкстрM       . 
 

Участок II: 20 2 м. z  
 

3 17 10 3 13 кН       AQ R q ; 
 

2 2 2 2(3 ) 3 (1,5 ) 17 (3 ) 10 3 (1,5 );             AМ R z q z z z  
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2 0;z  17 3 30 1,5 6 кН мM       ; 
 

2 2 м;z  17 5 30 3,5 20 кН м.M         
 

Участок III: 30 2 м. z  
 

3 310 ;   Q q z z  2 2
3 30,5 5 ;      М q z z  

 

3 0; 0; 0;z Q M    
 

3 2 м;z   20 кНQ ; 20 кН м.  M  
 

Тестовые вопросы и задачи для самопроверки 
 
 
1 Укажите верное правило знаков 

для поперечной силы Q: 
 
 

 

2 Укажите верное правило знаков 
для изгибающего момента M: 

  

3 Укажите правильную дифферен-
циальную зависимость: 

 
 

 

а) ;
dq

M
dz

               в) ;
dM

q
dz

  

 

б) ;
dM

Q
dz

              г) .
dQ

M
dz

  

4 На каком участке не соблюдаются 
дифференциальные зависимости меж-
ду Q и M:  

 
 
 

 



 17

5 Какая эпюра поперечных сил вер-
на для указанной балки: 

 

 
  

 
6 Какая эпюра изгибающих момен-

тов верна для указанной балки: 
 

 
  

 
 
8 Определение внутренних сил при кручении. Построение 

эпюр крутящих моментов 
 
Пример – Для заданного ступенчатого вала (рисунок 8.1) построить эпюру 

крутящих моментов. Предварительно вал уравновесить. 
 

 
 

Рисунок 8.1 
 
Решение 
 

Для определения скручивающего момента m1 составим уравнение статики: 
 

2 3 1 0    m m m m ,  
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откуда  

1 2 3 3 4 7 кН м     m m m . 
 

Построение эпюры Мкр: 
 

1 1 7 кН м  M m ; 
 

2 1 2 7 3 4 кН м     M m m ; 
 

3 1 2 3 7 3 4 0      M m m m . 
 
Тестовые вопросы и задачи для самопроверки  
 
1 При кручении стержня в попе-

речном сечении бруса возникает ...: 
 
 

а) продольная сила N; 
б) крутящий момент Мкр; 
в) изгибающий момент М; 
г) поперечная сила Q. 

2 Определите величину крутящего 
момента Мкр на участке 3 (по модулю): 

а) 22 кН м;
б) 8 кН м;
в) 10 кН м;
г) 2 кН м.

кр

кр

кр

кр

М
М
М
М

 
 
 
 

 

 
 
9 Расчеты на прочность и жесткость при растяжении-сжатии 

статически определимых брусьев 
 
Пример 1 – Произвести проверку прочности и жесткости стального сту-

пенчатого бруса, показанного на рисунке 9.1.  
Исходные данные: А1 = 3 см2; А2 = 5 см2; [σ] = 160 МПа; Е = 2ꞏ105 МПа; 

[∆ℓ] = 1 мм. 
 

Решение 
 

Проверку прочности производим по условию  
 

max
max

[ ]
N

A
     
 

. 

 
По эпюре продольных сил и конфигурации стержня определяем опас- 

ный участок: 
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3
6

max 4

70 10
140 10 Па 140 МПа [ ] 160 МПа.

5 10


       

  
 
Прочность бруса обеспечена. 

 

  
Рисунок 9.1 
 
Для проверки жесткости стержня строим эпюру  , определяя деформа-

цию каждого участка по формуле 
 


 


 N

E A
. 

 
Начало расчета находится в сечении, примыкающем к жесткой заделке, 

перемещение которого равно нулю: z = 0; 0 . 
 

z = 1 м;        мм7,0м107,0
105102

11070 3
411

3





 
 ; 

 

z = 1,5 м;      мм55,0м1055,0
105102

5,01030
107,0 3

411

3
3 




 


 ; 

 

z = 2,3 м;     
3

3 3
11 4

30 10 0,8
0,55 10 0,15 10 м 0,15 мм

2 10 3 10
 



  
      

  
 . 
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 max 0,7 мм 1 мм      . 
 

Жесткость бруса обеспечена. 
 
Пример 2 – Бетонная колонна (рисунок 9.2) круглого поперечного сечения 

длиной ℓ = 5 м сжимается силой 500 кНF  . 
Определить диаметр колонны, если допустимое напряжение на сжатие 

[σ] = 5 МПа, а удельный вес бетона 33 м/Н1020  . 
 

 
Рисунок 9.2 
 
Решение 
 
При постоянной площади поперечного сечения А полный вес колонны  

    G A . Эпюра продольных сил N показана на рисунке 9.2. 
В опасном сечении max    N F A . Условие прочности имеет вид: 

 
max

max [ ]
N F

A A
       . 

 
3

2
6 3

500 10
0,102 м

[ ] 5 10 20 10 5

F
A


  

       
. 

 
4 4 0,102

0,36 м 360 мм
 

   
 

A
d . 

 
Пример 3 – Определить наибольшее значение допустимой силы F для сту-

пенчатого чугунного бруса (рисунок 9.3), если А = 10 см2 , [σ]раст = 60 МПа, 
[σ]сж = 120 МПа. 

 
Решение 

 
Эпюра продольных сил N, выраженная в долях от силы F, показана  

на рисунке 9.3.  
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Рисунок 9.3 
 
Расчет допустимой силы по условию прочности в сжатой области: 
 

max
max

[ ]
сж

сж

N F

A A
      
 

; 

 
  4 6 3[ ] 10 10 120 10 120 10 Н.сжсж
F А          

 
Расчет допустимой силы по условию прочности в растянутой области:  
 

max
max

1,5
[ ]

2

раст

раст

N F

A A

        
; 

 

 
4 6

32 [ ] 2 10 10 60 10
80 10 Н.

1,5 1,5
раст

раст

А
F

    
     

 
Допустимой силой для бруса будет меньшая из рассчитанных  

сил:   80 кНF  . 

 
Тестовые вопросы и задачи для самопроверки 

 
1 По какой формуле определяются напряжения в поперечном сечении бру-

са при растяжении-сжатии: 

а) ;
M

W
          б) ;

N

A
       в) ;G         г) .

N

E A
 


 

 
2 По какой формуле определяется абсолютная деформация бруса при рас-

тяжении-сжатии: 

а) 
N

E A


 


 ;     б) 





' ;     в) ; 


 


    г)   N

A
. 
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3 Образец диаметром 0,02 м разрушился 
под действием силы F = 0,15 МН. Тогда вели-
чина предела прочности материала равна: 

а) 7,5 МПа;           в) 209,3 МПа; 
б) 375 МПа;          г) 477,7 МПа. 

 
 
4 Жесткий брус, нагруженный момен-

том М, поддерживается в горизонтальном по-
ложении стальным стержнем площадью 
поперечного сечения A. Условие проч-
ности стержня: 

 

 
 

а) [ ]; б) [ ];    в) [ ];     г) [ ]
2 2

M M А M M а

a A a A A

 
       

  
. 

 
 

10 Расчет статически определимых балок на прочность  
при плоском поперечном изгибе (проверочный расчет) 

 
Пример – Проверить прочность балки таврового сечения (рисунок 10.1), 

если [ ] раст = 30 МПа и [ ] сж = 60 МПа. 
 

 
 

Рисунок 10.1 
 
Решение 

 
Определение координаты центра тяжести поперечного сечения: 
 

15 5 2,5 15 5 12,5
7,5 см

15 5 15 5

    
 

  Cy . 
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Определение главного центрального момента инерции поперечного сечения: 
 

3 3
2 2 4 8 415 5 5 15

5 15 5 5 15 5 5312,5 см 5312,5 10 м
12 12xI  

           . 

 
Определение моментов сопротивления поперечного сечения относи- 

тельно оси х: 
 

8
6 3

2

5312,5 10
708 10 м

7,5 10
x

A
А

I
W

y







   


; 

 
8

6 3
2

5312,5 10
425 10 м

12,5 10
x

B
B

I
W

y







   


. 

 
По эпюре изгибающих моментов определяем опасное сечение, в котором 

действует максимальный изгибающий момент Мmax = 20 кНꞏм.  
Проверка прочности: 
 

3
6max

6

20 10
28,25 10 Па 28,25 МПа [ ] = 30 МПа

708 10A раст
A

M

W 


       


; 

 
3

6max
6

20 10
47 10 Па 47 МПа [ ] = 60 МПа

425 10В сж
В

M

W 


       


. 

 
Тестовые вопросы и задачи для самопроверки 

 
1 В сечении 1‒1 возникают 

внутренние силовые факторы: 
а) 0, 0M Q  ; 
б) 0, 0M Q  ; 
в) 0, 0M Q  ; 
г) 0, 0M Q  .  

 
2 Условие прочности по нормальным напряжениям при изгибе балки 

имеет вид: 
 

а) [ ]
M

W
  ;         б) [ ]

M

W


 


;        в) [ ]
M

E I
 


;        г) [ ]

F

W
  . 
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11 Расчет статически определимых балок на прочность  
при плоском поперечном изгибе (проектировочный расчет) 

 
Пример – Подобрать двутавровое поперечное сечение стальной балки  

(рисунок 11.1) и проверить его прочность по нормальным и касательным 
напряжениям. Исходные данные: [σ] = 160 МПа; [τ] = 100 МПа. 

 
Решение 
 
Строим эпюры поперечных сил Q и изгибающих моментов M (см. рису-

нок 11.1). По эпюре изгибающих моментов определяем опасное сечение, в ко-
тором действует максимальный изгибающий момент Мmax = 45 кНꞏм.  

Поперечное сечение выбираем из условия прочности по нормальным 
напряжениям: 

 

max
max [ ] 160 МПа

x

M

W
     ; 

 
3

6 3 3max
6

45 10
281,25 10 м 281,25 см

[ ] 160 10x

M
W 

    
 

. 

 
 

 
 
Рисунок 11.1 
 
Рассчитанному моменту сопротивления в наибольшей степени подходит 

двутавр № 24 (Wx = 289 см3; Ix = 3460 см4; Sx
* = 163 см3; b* = 5,6 мм). 

Проверяем прочность двутавра по касательным напряжениям: 



 25

* 3 6
6max

max * 3 8

60 10 163 10
50,5 10 Па 50,5 МПа [ ] 100 МПа.

5,6 10 3460 10
x

x

Q S

b I



 

   
        

   
 

 
Тестовые вопросы и задачи для самопроверки 

 

1 Максимальные нормальные 
напряжения действуют в точках: 

а) 10, 3, 8, 5; 
б) 3, 5, 6; 
в) 1, 2, 7, 6; 
г) 9, 4. 

2 Какие напряжения действуют в точке 1: 
а) нет напряжений; 
б) действуют нормальное и касательное 

напряжения; 
в) действует нормальное напряжение; 
г) действует касательное напряжение. 

 
 

 
 
12 Определение главных напряжений и расчеты по теориям 

прочности 
 
Пример 1 – В опасной точке 

нагруженной детали напряженное со-
стояние оказалось таким, как указано 
на рисунке 12.1.  

Проверить прочность детали по 
третьей теории прочности, если 
[ ] 160 МПа  . 

 
Решение 

 
 

Рисунок 12.1 
 
Напряжения, действующие на указанных площадках: 
 

70 МПа; 40 МПа; 55 МПа.x у ху        
 

Главные напряжения 
 

2 2 2 21 70 40 1
( ) 4 (70 40) 4 55 15 78;

2 2 2 2
х у

гл х у ху

   
                 
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max 115 78 93 МПа = ;    
     

min 315 78 63 МПа = ;     
  

2 0.   
 

Проверка прочности: 
 

III
1 2 93 ( 63) 156 МПа < [ ] 160 МПаэкв           . 

 
Условие прочности выполняется. 
 

Пример 2 – Для напряженного состояния (см. пример 1) определить поло-
жение главных площадок и направление действия главных напряжений. 

Определить величину максимальных касательных напряжений и указать 
площадки, на которых они действуют. 

 

Решение 
 

Положение главных площадок определяется углом α0: 
 

0

2 2 55
tg2 1;

70 ( 40)
xy

x y

 
   

   
 

 
о

0 22,5 .   

 
Так как α0 > 0, поворачиваем заданные площадки против часовой стрелки 

и получаем главные площадки (рисунок 12.2). 
 

 
 

Рисунок 12.2 
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Определяем величину максимальных касательных напряжений, которые 
действуют на площадках, расположенных под углом 45о по отношению  
к главным площадкам: 

 

1 3
max

93 ( 63)
78 МПа.

2 2

   
     

 
Тестовые вопросы и задачи для самопроверки 
 
1 Для заданного напряженного состояния 

максимальное главное напряжение равно ...: 

а) 






 
2

51 ;         в) 






 
2

52 ; 

б) 






 
2

51 ;        г) 






 
2

52 . 

2 Для заданного напряженного состояния 
главное напряжение σ3 равно: 

а) 80 МПа;     в) 20 МПа; 
б) 60 МПа;     г) – 80 МПа. 

 
 

 
3 Для заданного напряженного состояния 

определите эквивалентное напряжение по теории 
максимальных касательных напряжений:  

а)  65 МПа;       в) 165 МПа;    
б) 140 МПа;      г) 75 МПа. 

  

 
4 На главных площадках плоского напряженного состояния действуют:  

а) только касательные напряжения; 
б) только нормальные напряжения; 
в) нет напряжений; 
г) эквивалентные напряжения.
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13 Расчет статически определимых балок на прочность  
при плоском поперечном изгибе (определение допускаемой 
нагрузки) 

 
Пример – Деревянная балка прямоугольного поперечного сечения нагру-

жена силой F (рисунок 13.1). Определить допустимую величину силы [F]  
при [σ] = 10 МПа. Проверить прочность балки по касательным напряжениям 
при [τ] = 1 МПа. 

 

 
 

Рисунок 13.1 
 

Решение 
 

Осевой момент сопротивления поперечного сечения 
 

2 2
3 6 312 30

1800 см 1800 10 м
6 6x

b h
W  

     . 

 
Строим эпюры поперечных сил Q и изгибающих моментов M (см. рису-

нок 13.1).  
Допустимую силу рассчитаем из условия прочности по нормаль- 

ным напряжениям: 
 

max
max

1,2 [ ]
[ ];

x x

M F

W W


      

 

 
6 6[ ] 1800 10 10 10

15000 Н 15 кН
1,2 1,2
xW

F
    

    . 
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Проверка прочности по касательным напряжениям: 
 

3
6max

max 4

3 3 0,6 15 10
0,375 10 Па 0,375 МПа [ ] 1 МПа

2 2 12 30 10

Q

A 

 
          

 
. 

 
Тестовые вопросы и задачи для самопроверки 
 

1 Какой закон распределения нор-
мальных напряжений по высоте попе-
речного сечения балки: 
 

а) постоянный; 
б) гиперболический; 
в) параболический; 
г) линейный. 

2 В сечении 1–1 возникают внут-
ренние силовые факторы: 

а) 0, 0M Q  ; 
б) 0, 0M Q  ; 
в) 0, 0M Q  ; 
г) 0, 0M Q  .  

 
 
14 Расчет линейных и угловых перемещений при прямом  

поперечном изгибе 
 
Пример 1 – Проверить жесткость двутавровой балки (рисунок 14.1), если 

допустимый прогиб [у] = 6 мм.  
Исходные данные: двутавр № 20 (Ix = 1840 см4); Е = 2ꞏ105 МПа. 

 

Решение 
 
Уравнение прогибов для данной балки по методу начальных парамет- 

ров имеет вид: 
 

2 3 4

0 0 18 13 4
2! 3! 4!x x x

z z z
EI y EI y EI z          . 

 

 
 
Рисунок 14.1 
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Начальные параметры следующие: 0 00; 0y    . 
Максимальный прогиб уmax  = уВ при z = 2 м. 

 
2 3 4

32 2 2
18 13 4 21,33 кН м

2 6 24
         x BEI y . 

 
3

max 11 8

21,33 21,33 10
0,0058 м 5,8 мм [ ] 6 мм

2 10 1840 10


      

  B
x

y y y
EI

. 

 
Пример 2 – Методом начальных параметров определить прогиб сечения С 

и угол поворота сечения D деревянной балки прямоугольного поперечного се-
чения указанных размеров (рисунок 14.2).  

Модуль продольной упругости материала Е = 104 МПа = 1010 МПа. 
 

 
 
Рисунок 14.2 
 
Решение 
 
Определение осевого момента инерции поперечного сечения: 
 

3
4 5 412 20

8000 см 8 10 м
12xI 

    . 

 
Определение начальных параметров: 

 
4

0 0

2
2 4 0

4!x A x xEI y EI y EI       ; 

 
4 4 3 3

0 0

6 4 4 2
6 4 4 14 8 0

4! 4! 3! 3!x B x xEI y EI y EI             ; 

 

3 2
0 0

40
кН м ; 8 кН м

3x xEI y EI      . 
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Прогиб сечения С 
 

4 4 3

0 0

4 4 3
3

4 2 2
4 4 4 14

4! 4! 3!

40 4 2 2 8
8 4 4 4 14 кН м ;

3 24 24 6 3

x C x xEI y EI y EI          

            

 

 
3

2
10 5

8 8 10
0,33 10 м 3,3 мм

3 3 10 8 10C
x

y
EI





        

   
. 

 
Угол поворота сечения D равен начальному параметру 0 : 

 
3

10 5

8 8 10
0,01 рад

10 8 10


   

 D
xEI

. 

 
Тестовые вопросы и задачи для самопроверки 

 
1 Укажите наиболее общее определение «начальные параметры»: 

а) прогиб и угол поворота в опорном сечении; 
б) прогиб и угол поворота в крайнем левом сечении балки; 
в) прогиб и угол поворота в жесткой заделке; 
г) прогиб и угол поворота в крайнем правом сечении балки. 
 

2 Начальные параметры показанной балки 
равны: 

 
 

а) 0 00, 0y    ; 

б) 0 00, 0y    ; 

в) 0 00, 0y    ; 

г) 0 00, 0y    . 

3 В каком сечении 
показанной балки прогиб 
равен нулю: 

а) сечение А; 
б) сечение С; 
в) сечение В; 
г) сечения А и В. 

4 Балка нагружена сосредоточенным 
моментом М. Жесткость поперечного 
сечения балки равна EIx. Начальный па-
раметр 0  равен: 
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а) 0 8 x

M

EI


 




;      б) 0 0  ;       в) 0 8 x

M

EI


  




;     г)  0 24 x

M

EI


 




. 

5 Укажите жесткость поперечного сечения при изгибе: 
а) xGI ;        б) EI ;       в) xEI ;         г) EА. 

 

15 Расчеты на прочность и жесткость при  
растяжении-сжатии в статически неопределимых системах 

 
Пример 1 – Проверить прочность ступенчатого стального бруса (рису-

нок 15.1), если площадь поперечного сечения А = 3 см2, модуль упругос- 
ти Е = 2ꞏ105 МПа, допустимое напряжение [σ] = 160 МПа. 

 

 
 
Рисунок 15.1 

 
Решение 
 
Составим уравнение статического равновесия: 

 
60 40 0     C BX R R . 

 
Стержень один раз статически неопределим, т. к. единственное уравнение 

статики содержит две неизвестные реакции, для определения которых необхо-
димо составить дополнительно одно деформационное уравнение: 

 
0P R        , 

 
где P , R  – деформации стержня от внешних сил и реакций на опорах со-
ответственно. 

Используем принцип независимости действия сил. Мысленно отбросим 
опору С и представим заданный стержень под действием внешних сил с по-
строением эпюры NP и под действием реакции RC с построением эпю- 
ры NR (рисунок 15.2). 

 



 33

 
 

Рисунок 15.2 
 

Выразим абсолютные деформации стержня на каждом участке в долях от 
жесткости поперечного сечения: 

 
4

i i

i=1 i i

N 60 1 20 1,5 90
0 0

  
      

    P Е А E A E A E A
; 

 
4

i i

i=1 i i

1 1 1 1,5 4

2

     
        

       C C C C C
R

N R R R R R

Е А E A E A E A E A E A
. 

 
Решим деформационное уравнение: 
 

90 4
0


   

 
 CR

E A E A
,   
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откуда RC = 22,5 кН. 
Окончательную эпюру продольных сил N строим суммированием эпюр NP 

и NR. Производим проверку прочности на опасном участке III. 
 

3
6

max 4
max

37,5 10
125 10 Па 125 МПа [ ] 160 МПа

3 10

N

A 
            

. 

 
Пример 2 – Определить грузоподъемность стержневой системы,  которая 

состоит из абсолютно жесткого бруса  ВС и двух стальных стержней 1 и 2 (ри-
сунок 15.3, а).  

Исходные данные:  2 2 о
1 2 1 21 м; 1,5 м; 1 см ; 1,4 см ; 30 ;A A        

5[ ] 160 МПа;  2ꞏ10 МПаЕ   . 
 

 
 
Рисунок 15.3 
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Решение 
 
Проведем сечение через оба стержня и рассмотрим внутренние силы N1  

и N2 (рисунок 15.3, б).  
Составим уравнение статического равновесия: 
 

1 2 2 cos 0DM N a N a F a         , 

 

1 2 2cosN N F    .     (15.1) 
 
Составим уравнение совместности деформаций и перемещений, для чего 

рассмотрим конструкцию в деформированном состоянии (рисунок 15.3, в).  
В результате удлинения стержней брус ВС повернется вокруг шарнира D, оста-
ваясь прямым. Перемещение шарнира В равно удлинению первого стержня: 

1'BB   . Перемещение шарнира С равно: 2' cosCC    .  
Из подобия треугольников 'DBB  и 'DCC  получаем 
 

1 2 / cos

2a a

  


 
,   или    2 12cos      . 

 
Выразим деформации стержней через продольные силы: 
 

2 2 1 1

2 1

2cos
N N

EA EA
 

 
; 

 

1 2
2 1

2 1

2cos
A

N N
A

 



.    (15.2) 

 
Подставим уравнение (15.2) в уравнение (15.1): 
 

2 o1 2
1 1 1

2 1

1 1,4
1 4cos 1 4cos30 3,8

1,5 1

A
N N N F

A

             




. 

 
о

1 2 1

1 1,4
0,263 ; 2cos30 0,425

1,5 1
N F N N F


  


. 

 
Напряжения в стержнях 
 

1
1 4 2

1

0,263 1
2630

1 10 м

N F
F

A 

          
; 
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2
2 4 2

2

0,425 1
3036

1,4 10 м

N F
F

A 

          
. 

 
Более нагруженным оказался стержень 2. 
Определим допустимую грузоподъемность из условия прочности: 
 

max 2 3036 [ ]F       . 
 

6
3[ ] 160 10

[ ] 52,7 10 H 52,7 кН
3036 3036

F
 

     . 

 
Тестовые вопросы и задачи для самопроверки 

 
1 Сколько независимых уравнений статики можно составить для плоской 

стержневой системы: 
а) одно;              б) два;              в) три;              г) четыре. 

 
2 Сколько дополнительных деформационных уравнений нужно составить 

для дважды статически неопределимой стержневой системы: 
а) одно;              б) два;              в) три;              г) четыре. 

 
3 Укажите условие прочности для статически неопределимой системы, 

работающей на растяжение-сжатие: 

а) [ ]
Q

A
  ;      б) [ ]

M

W
  ;    в) [ ]

N

E
  ;    г) [ ]

N

A
  . 

4 Какое свойство не присуще статически неопределимым системам: 
а) возможность возникновения температурных напряжений; 
б) возможность возникновения монтажных напряжений; 
в) возможность свободного деформирования; 
г) перераспределение внутренних усилий при нарушении одной связи. 

5 Определите реакцию на правой опоре R, если жесткость поперечного 
сечения ЕА постоянна по величине: 

а) 60 кН; 
б) 200 кН; 
в) 85,7 кН; 
г) 140 кН. 
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