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Введение 
 
Цель преподавания дисциплины – сформировать у студентов основные 

знания и умения по расчету типового элемента конструкций (бруса) на проч-
ность, жесткость и устойчивость, по выбору конструкционных материалов и 
форм поперечных сечений, обеспечивающих требуемые показатели надежно-
сти, безопасности и экономичности сооружений. 

Студенты специальности 6-05-0722-05 «Производство изделий на основе 
трехмерных технологий» изучают дисциплину «Механика материалов и кон-
струкций» на протяжении 3-го и 4-го семестров. Методические рекомендации 
выполнены в объеме практических занятий 4-го семестра. 

По каждой теме практических занятий в методических рекомендациях 
приводится один или более примеров с подробным решением. Далее следуют 
вопросы для самопроверки в форме тестовых заданий.  

Методические рекомендации помогут сформировать у студентов компе-
тенции: 

‒ владеть основами исследовательской деятельности, осуществлять поиск, 
анализ и синтез информации; 

‒ быть способным к саморазвитию и совершенствованию в профессио-
нальной деятельности; 

‒ проявлять инициативу и адаптироваться к изменениям в профессиональ-
ной деятельности; 

‒ выбирать конструктивные материалы и формы элементов конструкций, 
расчетные схемы, производить расчеты технических конструкций и их элемен-
тов на прочность, устойчивость, жесткость. 

Перед практическим занятием студентам предлагается изучить материал те-
мы по конспекту лекций и рекомендуемой литературе [1–11], разобрать решение 
приведенных типовых примеров и проработать материал для самопроверки. 
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1 Расчет вала круглого поперечного сечения на прочность  
 
Пример 1 – Проверить прочность и жесткость стального бруса (рису-

нок 1.1). Исходные данные: [τ] = 60 МПа; G = 0,8ꞏ105 МПа; [φ] = 0,03 рад. 
 
Решение 
 

 
 

Рисунок 1.1 
 
Геометрические характеристики вала следующие: 

4
4 8 4

1 2

3,14 5
61,33 см 61,33 10 м

32


 


    I I ; 

4
4 8 4

3

3,14 4
25,12 см 25,12 10 м

32





   I ; 

3
3 6 3

1 2

3,14 5
24,53 см 24,53 10 м

16


 


    W W ; 

3
3 6 3

3

3,14 4
12,56 см 12,56 10 м

16





   W . 

Строим эпюру крутящих моментов Мкр (см. рисунок 1.1). 
Проверка прочности вала: 

6
1 6

1

1400
57,1 10 Па 57,1 МПа

24,53 10


     


крM

W
; 
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6
2 6

2

600
24,5 10 Па 24,5 МПа

24,53 10


     


крM

W
; 

6
3 6

3

600
47,8 10 Па 47,8 МПа

12,56 10


     


крM

W
; 

max 57,1 МПа [ ] 60 МПа     . 

Построение эпюры углов закручивания и проверка жесткости вала: 

1 1

n n
кр i i

i
i i i i

M

G I  


   

 


; 

z = 0 м;      φ = 0 рад; 

z = 1 м;      рад0285,0
1033,61108

11400
8101 




  ; 

z = 1,4 м;      рад0236,0
1033,61108

4,0600
0285,0

81021 



  ; 

z = 1,7 м;       рад0146,0
1012,25108

3,0600
0236,0

81032 



  ; 

  рад03,0рад0285,0max  . 

Пример 2 – Определить минимальный диаметр стального вала  
(рисунок 1.2), если [τ] = 90 МПа, G = 0,8ꞏ105 МПа, [Ө] = 0,03 рад/м. 

 

 
 

Рисунок 1.2 
 
Решение 

 
По эпюре Мкр определим опасный участок, на котором действует макси-

мальный крутящий момент 5 кНꞏм. 
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Из условия жесткости 

 

max 3

44
11

32 32 5 10
0, 0679 м

3,14 0,8 10 0, 03
крM

d
G

  
  

      
. 

В качестве минимального диаметра вала выбираем значение 

d = 0,0679 м = 67,9 мм. 
 

Тестовые вопросы и задачи для самопроверки 
 
1 Укажите формулу для расчета максимальных касательных напряжений 

при кручении: 

    а) max
крM

W


 


;  б) max

крM

GI
  ;  в) max

крM

I
  ;   г) 

max
крM

W

  . 

2 Определите из расчета 
на прочность допустимое зна-
чение момента [Мкр], если 
диаметр вала 2 см, а допусти-
мое напряжение [ ] 80 МПа  : 

а) мН50  ; 
б) мН60  ; 
в) мН40  ; 
г) мН30  .  

3 Как распределяются касатель-
ные напряжения в поперечном сече-
нии бруса при кручении? 
 

 
 

2 Расчет вала круглого поперечного сечения на прочность 
при совместном действии изгиба и кручения 

 
Пример – На вал круглого сплошного сечения диаметром d = 68 мм наса-

жены шестерня средним диаметром D1 = 0,23 м и шкив ременной передачи 
диаметром D2 = 0,39 м и весом G = 600 Н (рисунок 2.1, а). Вал делает 
660 об/мин и передает мощность 40 кВт. Допускаемое напряжение материала 
вала [τ] = 80 МПа. Проверить прочность вала в опасном сечении по четвертой 
теории прочности. 

 
Решение 
 
Внешние крутящие моменты, передаваемые валом через шестерню и шкив, 
 

30 40000 30
579 Н м

3,14 660

 
   

  
N

m
n

. 
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Рисунок 2.1  
 
Схема действия крутящих моментов и эпюра Мкр показаны на ри- 

сунке 2.1, б. 
Окружное усилие F1, действующее на шестерню и вал в вертикальной 

плоскости, 
 

1
1

2 2 579
5035 H

0,23

 
  

m
F

D
. 

 
Изгибающая сила F2 от ременной передачи на шкиве, действующая на вал 
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в горизонтальной плоскости, 
 

2
2

2 2 579
3 3 8908 H

0,39

 
    

m
F

D
. 

 
Схема действия изгибающих сил в вертикальной плоскости показана на 

рисунке 2.1, в. Опорные реакции RAу и RВу определены из уравнений статиче-
ского равновесия вала. Ниже схемы показана эпюра изгибающих моментов Мх. 

Схема действия изгибающих сил в горизонтальной плоскости показана на 
рисунке 2.1, г. Опорные реакции RAх и RВх определены из уравнений статиче-
ского равновесия вала. Ниже схемы показана эпюра изгибающих моментов Му. 

Значения суммарных изгибающих моментов Мизг в характерных сечениях 
вала определим по формуле 
 

2 2
изг х уМ М М  . 

0AM ;   0BM . 

1

2 21403 891 1662 Н м   DМ ; 

2

2 2638 2004 2103 Н м   DМ . 

По эпюре полных изгибающих моментов Мизг и эпюре крутящих момен- 
тов Мкр определим опасное сечение вала, в котором действуют наибольший  из-
гибающий момент Мизг = 2103 Нꞏм и крутящий момент Мкр = 579 Нꞏм. 

Значение эквивалентного момента в опасном сечении, согласно четвертой 
теории прочности 

 
IV 2 2 2 20,75 2103 0,75 579 2162 Н м       экв изг крМ M М . 

Осевой момент сопротивления вала 

3 3
33,14 6,8

30,85 см
32 32

  
  x

d
W . 

Проверка прочности: 

IV
6

6

2162
70,1 10 Па 70,1 МПа < [ ] = 80 МПа

30,85 10
экв

экв
x

M

W       


. 

Условие прочности выполняется. 
 
Тестовые вопросы и задачи для самопроверки 
 
1 Какая теория прочности применяется для расчета стальных валов на сов-

местное действие изгиба и кручения: 



 10

а) 1 2 3( ) [ ]экв           ;        в) 1 3 [ ]экв       ; 
б) 1 3 [ ]экв         ;                   г) 1 [ ]экв     . 

2 Как определить эквивалентный момент по третьей теории прочности: 

а) 2 2
экв изг крМ М М  ;                  в) 2 20,75экв изг крМ М М   ; 

б) 2 2
экв х уМ М М  ;                      г) 2 20,75экв кр изгМ М М   . 

3 Как определить суммарный изгибающий момент: 
а) изг x уМ М М  ;                       в) изг х уМ M М  ; 

б) 2 2
изг х уМ М М  ;                         г) изг х уМ М +М . 

 
 
3 Расчеты при сложном изгибе 
 
Пример 1 ‒ Стальная балка двутаврового поперечного сечения находится 

под действием нагрузки, приложенной в вертикальной и горизонтальной плос-
костях (рисунок 3.1). Проверить прочность балки. 

Дано: двутавр № 30 (Wx = 472 см3; Wy  = 49,9 см3); [σ] = 160 МПа. 
 

 
Рисунок 3.1  
 
Решение 

 
Составим расчетные схемы для построения эпюр изгибающих моментов. 

Вертикальные силы изгибают балку в вертикальной плоскости, создавая мо-
мент Мх. Горизонтальные силы изгибают балку в горизонтальной плоскости, 
создавая момент Му. Промежуточные расчетные схемы и эпюры изгибающих 
моментов показаны на рисунке 3.2. 

Выполним проверку прочности в предполагаемых опасных сечениях по 
условию  
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max [ ]yx

x y

MM

W W
     . 

 

 
 
Рисунок 3.2  
 
Напряжение в сечении I 

3 3
6

I 6 6

16 10 1 10
54 10 Па

472 10 49,9 10 
 

    
 

. 

Напряжение в сечении II 

3 3
6

II 6 6

4 10 5 10
109 10 Па

472 10 49,9 10 
 

    
 

. 

Наиболее опасным оказалось сечение II. Условие прочности выполняется: 

max 109 МПа < [ ] 160 МПа    . 

Пример 2 ‒ Деревянная балка прямоугольного поперечного сечения нахо-
дится под действием нагрузки, приложенной в вертикальной и горизонтальной 
плоскостях (рисунок 3.3). Определить минимальные размеры поперечного се-
чения (bmin), если [σ] = 10 МПа. 
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Рисунок 3.3  
 
Решение 

 

Составим расчетные схемы для построения эпюр изгибающих моментов. 
От силы, действующей в вертикальной плоскости, строим эпюру изгибающих 
моментов Мх. От силы, действующей в горизонтальной плоскости, строим эпю-
ру изгибающих моментов Му  (рисунок 3.4).  

 

 
 

Рисунок 3.4  
 
Осевые моменты сопротивления прямоугольного сечения выразим через 

размер b: 
2 3(2 ) 2

6 3

 
 x

b b b
W ;      

2 32

6 3


 y

b b b
W . 
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Условие прочности для опасного сечения 

3 3 3
6

max 3 3 3

13 10 3 2,4 10 3 26,7 10
[ ] 10 10 Па

2 b b b

    
       


. 

Определим размер bmin: 

3

3
min 6

26,7 10
0,1387 м 140 мм

10 10
b


  


. 

Вывод: для заданной балки следует использовать деревянный брус с ми-
нимальными размерами 140 × 280 мм. 

 
Тестовые вопросы и задачи для самопроверки 
 
1 При косом изгибе нулевая линия: 

а) перпендикулярна плоскости суммарного изгибающего момента; 
б) перпендикулярна плоскости суммарного прогиба; 
в) совпадает с плоскостью суммарного изгибающего момента; 
г) совпадает с плоскостью суммарного прогиба. 

2 По какой формуле определяются максимальные напряжения при косом 
изгибе для сечений, которые вписываются в прямоугольник: 

а) max   yx

x y

MM

I I
;   б) max

max 
х

M

W
;   в) max   yx

x y

MM

W W
;   г) max

max .
x

M

W
 

 

3 Для каких поперечных сечений косой изгиб невозможен: 
а) двутавр и прямоугольник; 
б) квадрат и равносторонний треугольник; 
в) швеллер и равнобедренный треугольник; 
г) равнополочный уголок. 

 
 
4 Расчет колонны на внецентренное растяжение-сжатие 
 
Пример 1 – Проверить прочность бетонной колонны, если F = 7 кН,  

[σ]раст = 0,6 МПа, [σ]сж = 6 МПа (рисунок 4.1, а). 
 
Решение 
 
Определим геометрические характеристики поперечного сечения колонны. 
Площадь А = 20ꞏ18 = 360 см2. 
Координаты точки приложения силы следующие: xF = 15 см; yF = 0. 
Положение нейтральной оси определяется по величине отрезков, которые 

она отсекает на осях координат (рисунок 4.1, б): 
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2

0

33,3
2, 2 см

15
     y

F

i
Х

x
; 

2

0

27
.

0
х

F

i
У

у
       

    а) б) 
 

 

 
Рисунок 4.1 
 
Нейтральная ось разделила колонну на две части. Определим координаты 

опасных точек. 
В растянутой области из самых дальних от нейтральной оси точек на 

ребре выделим любую, например точку 1:  x1 = –10 см;  y1 = 0. 
В сжатой области из самых дальних от нейтральной оси точек на ребре 

выделим любую, например точку 2: x2 = 10 см; y2 = 0. 
Проверим прочность колонны по условию 

max 2 2
1 [ ]F оп F оп

y x

F x x y y

A i i

  
         

 
, 

где хоп, уоп  – координаты опасных точек поперечного сечения. 
Проверка прочности в растянутой области (точка 1): 

3
6

max 1 4

7 10 15 ( 10)
1 0 0,68 10 Па 0,68МПа

33,3360 10
раст


                

; 
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max 0,68 МПа [ ] 0,6 МПараст
раст     . 

Перегрузка составила: 

max [ ] 0,68 0,6
100 % 100 % 13,3 % 5 %

[ ] 0,6

   
      


, 

что недопустимо. 
Проверка прочности в сжатой области (точка 2): 

3
6

max 1 4

7 10 15 (10)
1 0 1,07 10 Па 1,07 МПа

33,3360 10
                 

раст ; 

max 1,07 МПа [ ] 6 МПа.сж
сж      

Вывод: так как условие прочности на растяжение не выполняется, то проч-
ность колонны не обеспечена. 

 
Пример 2 – Определить минимальный диаметр стального стержня, к кото-

рому приложена растягивающая сила F = 30 кН (рисунок 4.2), если допустимое 
напряжение материала [σ] = 180 МПа.  

 

 
Рисунок 4.2 
 
Решение 

Площадь поперечного сечения стержня  
2

20,785
4


  

d
A d . 

Квадрат радиуса инерции   2 2 2 16 x уi i d . 

Координаты точки приложения силы следующие: xF = 0;  yF = – d/4. 
Отрезки, которые отсекает нейтральная линия на осях координат, 

2 2

0

16

0
      y

F

i d
Х

x
; 
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2 2

0

16

4 4
    


х

F

i d d
У

у d
. 

Опасной является точка А как самая удаленная точка от нейтральной оси 
(см. рисунок 4.2). Ее координаты следующие: xА = 0; yА = – d/2. 

Определим минимальный диаметр стержня из условия прочности: 

max 2 2
1 [ ]F А F А

y x

F x x y y

A i i

  
        

 
; 

max 2 2 2

0 0 ( 4) ( 2)
1 3 [ ]

16 16 0,785

F d d F

A d d d

    
           

; 

3

6

3 30 10 3
0,025 м 25 мм

[ ] 0,785 180 10 0,785

F
d

  
   

   
. 

Пример 3 – Определить допустимую сжимающую силу для чугунного 
стержня коробчатого поперечного сечения (рисунок 4.3), если допустимое 
напряжение материала  [σ]раст = 60 МПа, [σ]сж = 150 МПа. Построить ядро се-
чения. Размеры на рисунке 4.3 показаны в миллиметрах. 

 

 
Рисунок 4.3 
 
Решение 

Площадь поперечного сечения А = 12ꞏ9 ‒ 6ꞏ9 = 54 см2. 
Осевые моменты инерции 

3 3
412 9 9 6

567 см
12 12

 
  хI ;  

3 3
49 12 6 9

931,5 см
12 12

 
  yI . 

Квадраты радиусов инерции 

2 2567
10,5 см

54
  x

x

I
i

А
;   2 2931,5

17,25 см
54

  y
y

I
i

А
. 
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Координаты точки приложения силы следующие: xF = ‒4,5 см; yF = ‒3 см. 
Положение нейтральной оси определим по величине отрезков, которые она 

отсекает на осях координат (см. рисунок 4.3): 
 

2

0

17,25
3,8 см

4,5
y

F

i
Х

x
    


; 

2

0

10,5
3,5 см

3
х

F

i
У

у
    


. 

Нейтральная ось разделила колонну на две части.  
В растянутой области составим условие прочности для опасной точки А  

с координатами xА = 6 см; yА = 4,5 см: 
 

max

( 4,5) 6 ( 3) 4,5 ( 1,85)
1 [ ] 60 МПа

17,25 10,5
раст

А раст

F F

А А

                   
 

. 

Откуда допустимая сила 

4 6
3[ ] 54 10 60 10

175 10 Н 175 кН
1,85 1,85

растА
F

    
     . 

В сжатой области составим условие прочности для опасной точки В  
с координатами xВ = ‒ 6 см; yВ = ‒ 4,5 см: 

 

max

( 4,5) ( 6) ( 3) ( 4,5) 3,85
1 [ ] = 150 МПа.

17,25 10,5
сж

В сж

F F

А А

                    
 

 

Откуда допустимая сила 

4 6
3[ ] 54 10 150 10

210 10 Н 210 кН
3,85 3,85

сжА
F

    
     . 

Допустимой для всего стержня будет меньшая из рассчитанных сил: 
[ ] 175 кНF . 

 
 
5 Построение ядра сечения при внецентренном приложении 

продольной силы 
 
Пример ‒ Для чугунного стержня, показанного на рисунке 4.3, построить 

ядро сечения. 
 
Решение 

Для построения ядра сечения  нужно провести касательные линии к конту-
ру сечения (рисунок 5.1) и определить координаты угловых точек ядра по сле-
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дующим формулам: 
 

2 2

0 0

;   у х
Я Я

i i
x у

Х У
. 

 

 
 

Рисунок 5.1 
 
Касательная 1–1: 0 06 см;Х У    . 

Точка 1: 
2 2

1 1
0 0

17, 25 10,5
2,9 см; 0.

6
у х

i i
x у

Х У
         

 
 

Касательная 2–2: 0 0; 4,5 смХ У   . 

Точка 2: 
2 2

2 2
0 0

17, 25 10,5
0; 2,3 см.

4,5
у х

i i
x у

Х У
          


 

Касательная 3–3: 0 06 см;Х У   . 

Точка 3: 
2 2

3 3
0 0

17, 25 10,5
2,9 см; 0.

6
у х

i i
x у

Х У
          


 

Касательная 4–4: 0 0; 4,5 смХ У    . 

Точка 4: 
2 2

4 4
0 0

17, 25 10,5
0; 2,3 см.

4,5
у х

i i
x у

Х У
         

 
 

Найденные точки соединяются прямыми линиями (см. рисунок 5.1). 
 
Тестовые вопросы и задачи для самопроверки 
 
1 Какие внутренние силовые факторы возникают в поперечных сечениях 

бруса при внецентренном растяжении или сжатии: 
а) продольная сила и поперечная сила; 
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б) только продольная сила; 
в) только изгибающие моменты; 
г) изгибающие моменты и продольная сила. 

2 По какой формуле определяются напряжения при внецентренном растя-
жении-сжатии: 

а) 


    yx

x y

M xM y

I I
;             в) 2 2

1
  

       
 

F F

х у

F x x y y

A i i
; 

б) 


    yx

x y

M уM х

I I
;             г) 2 2

1
  

       
 

F F

y x

F x x y y

A i i
. 

3 При внецентренном растяжении-сжатии нулевая линия: 
а) проходит через центр тяжести поперечного сечения; 
б) проходит через точку приложения силы; 
в) находится за центром тяжести поперечного сечения напротив силы; 
г) находится между центром тяжести и точкой приложения силы. 

4 При внецентренном растяжении-сжатии нормальные напряжения  
максимальны: 

а) в точке, наиболее удаленной от приложенной силы; 
б) в точке, наиболее удаленной от нулевой линии; 
в) в точке приложения силы; 
г) в центре поперечного сечения. 

5 Какой закон распределения нормальных напряжений в поперечном сече-
нии бруса при внецентренном растяжении-сжатии: 

а) постоянный; 
б) гиперболический; 
в) параболический; 
г) линейный. 

6 Если сила приложена на границе ядра сечения, то нулевая линия ...: 
а) проходит за пределами поперечного сечения; 
б) проходит через точку приложения силы; 
в) касается поперечного сечения; 
г) пересекает поперечное сечение. 

 
 
6 Расчеты сжатых стержней на устойчивость 
 
Пример 1 (проверочный расчет) – Проверить устойчивость стального 

стержня (рисунок 6.1), определить его критическую силу Fкр и коэффициент  
запаса устойчивости ny.  

Исходные данные: [σ] = 160 МПа (Ст 3);  коэффициент приведения длины 
μ = 0,7; коэффициенты 310 МПа,  1,14 МПа a b . 
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Рисунок 6.1 
 
Решение 
 
Площадь сечения А = 6ꞏ9 = 54 см2. 

Минимальный осевой момент инерции 
3 3

4
min

9 6
162 см

12 12

 
   y

h b
I I . 

Минимальный радиус инерции  min

162
1,73 см

54
   y

y

I
i i

А
. 

Максимальная гибкость стержня  max 2
min

0,7 2,4
97,1

1,73 10
  

   



i

. 

Определяем коэффициент продольного изгиба φ методом линейной интер-
поляции, используя данные [2, таблица А.3]:  при λ = 90 φ = 0,69;  
при λ = 100 φ = 0,6. 

 
0,69 0,6

0,69 (97,1 90) 0,626.
100 90


     

  

Проверяем устойчивость стержня по формуле 

 F

A
    ; 

 
3

6
4

490 10
90, 74 10 Па 90, 74 М Па <

54 10

0, 626 160 100, 2 М Па.




      

  




 

Критическую силу определяем по формуле Ясинского, т. к. гибкость 
стержня меньше предельной гибкости для стали (97,1 < 100): 

 
6 6 4 3( ) = (310 10 1,14 10 97,1) 54 10 1076 10 НкрF а b A              . 
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Коэффициент запаса устойчивости найдем по формуле 

1076
2, 2

490
кр

у

F
n

F
   . 

Пример 2 (проектировочный расчет) – Подобрать размеры поперечного 
сечения стального стержня (рисунок 6.2).  

Исходные данные: [σ] = 200 МПа (сталь 14Г2);  коэффициент приведения 
длины стержня, закрепленного жестко с одной стороны, μ = 2. 

 

 
 
Рисунок 6.2 
 
Решение 
 
Расчет ведется методом последовательного приближения. 
Первое приближение.  
Задаёмся начальным коэффициентом продольного изгиба φ1 = 0,5. 
Из условия устойчивости вычисляем площадь поперечного сечения: 

3
4 2

1 6
1

400 10
40 10 м

[ ] 0,5 200 10

F
А 

   
   

. 

По найденной площади определяем размеры квадратного поперечного 
сечения: 

 
4

1 1 40 10 0,063 м.а А      

Вычисляем минимальный радиус инерции этого поперечного сечения: 

4
min

min 2

0,063
0,0182 м

12 3,46 3,46y x

I a a
i i i

А a
      


. 

Определяем гибкость стержня найденного поперечного сечения:  

1
min

2 1,5
164,8.

0,0182i

  
   


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Находим коэффициент продольного изгиба методом линейной интерполя-
ции, используя  данные  [2,  таблица  А.3, сталь 14Г2]:  при  λ = 160  φ = 0,21;  
при  λ = 170  φ = 0,19. 

 

1
0,21 0,19

0,21 (164,8 160) 0,2.
170 160

     


 

 
Сравниваем начальный и конечный коэффициенты продольного изгиба 

первого приближения: φʹ1 ≠ φ1. 
Второе приближение. 
Определяем начальный коэффициент продольного изгиба: 

1 1
2

0,5 0,2
0,35.

2 2

   
     

Из условия устойчивости вычисляем площадь поперечного сечения: 

 
3

4 2
2 6

2

400 10
57,14 10 м

0,35 200 10

F
А .

 


 
  

 

По найденной площади определяем размеры квадратного поперечного 
сечения: 

 
4

2 2 57,14 10 0,076 м.а А      

Вычисляем минимальный радиус инерции этого поперечного сечения: 

2
min

0,076
0,022 м

3,46 3,46

a
i    . 

Определяем гибкость стержня найденного поперечного сечения:  

2
min

2 1,5
136,4.

0,022i

  
   


 

Находим коэффициент продольного изгиба методом  линейной интерполя-
ции, используя данные [2, таблица А.3]: при λ = 130 φ = 0,29; при λ = 140 φ = 0,25. 

 

2
0,29 0,25

0,29 (136,4 130) 0,264.
140 130

     
  

Сравниваем начальный и конечный коэффициенты продольного изгиба 
второго приближения: φʹ2 ≠ φ2. 

Третье приближение. 
Определяем начальный коэффициент продольного изгиба: 

2 2
3

0,35 0,264
0,307.

2 2

   
     
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Из условия устойчивости вычисляем площадь поперечного сечения: 

 
3

4 2
3 6

3

400 10
65 10 м

0 307 200 10

F
А .

,


   
  

 

По найденной площади определяем размеры квадратного поперечного 
сечения: 

 
4

3 3 56,4 10 0,081 м.а А      

Вычисляем минимальный радиус инерции этого поперечного сечения: 

3
min

0,081
0,0234 м

3,46 3,46

a
i    . 

Определяем гибкость стержня найденного поперечного сечения:  

3
min

2 1,5
128,2.

0,0234i

  
   


 

Находим коэффициент продольного изгиба  методом  линейной интерпо-
ляции, используя данные  [2,  таблица  А.3]:  при  λ = 120  φ = 0,33;  при  λ = 130 
φ = 0,29. 

 

3
0,33 0,29

0,33 (128,2 120) 0,3.
130 120

     


 

Сравниваем начальный и конечный коэффициенты продольного изгиба 
третьего приближения: φʹ3 ≈ φ3. 

Принимаем квадратное поперечное сечение стержня со стороной 81 мм. 
 
Пример 3 (определение несущей способности) – Определить допустимое 

значение сжимающей силы [F] стального стержня двутаврового поперечного 
сечения (рисунок 6.3), его критическую силу Fкр и коэффициент запаса устой-
чивости ny.  

Исходные данные: коэффициент приведения длины μ = 0,5; допустимое 
напряжение на сжатие [σ] = 160 МПа (Ст 3); модуль упругости Е = 2ꞏ105 МПа. 

 
Решение 

Площадь и минимальный радиус  инерции двутавра № 10 следующие:  
А = 12 см2;  iy = imin = 1,22 см. 

Максимальная гибкость стержня 

max 2
min

0,5 4
163,9

1,22 10
  

   



i

. 

Определим коэффициент продольного изгиба φ методом линейной интер-
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поляции, используя данные [2, таблица А.3]: при λ = 160 φ = 0,29; при λ = 170 
φ = 0,26. 

 
0,29 0,26

0,29 (163,9 160) 0,278.
170 160


     


 

 

 
 
Рисунок 6.3 
 
Из условия устойчивости найдем допустимое значение сжимающей силы: 

4 6 3[ ] [ ] 12 10 0,278 160 10 53,4 10 Н = 53,4 кНF A           . 

Критическую силу определяем по формуле Эйлера, т. к. гибкость стержня 
больше предельной гибкости для стали (163,9 > 100): 

 
2 2 11

4 3
2 2

3,14 2 10
12 10 88,1 10 Н 88,1 кН

163,9кр

E
F A    

       


. 

Коэффициент запаса устойчивости найдем по формуле 

88,1
1,65

[ ] 53,4
кр

у

F
n

F
   . 

 
 

7 Расчет составного сечения продольно сжатого стержня 
 

Пример – Определить максимальную гибкость составного сечения колон-
ны, состоящего из двух швеллеров № 18, показанного на рисунке 7.1, а. Усло-
вия закрепления колонны показаны на рисунке 7.1, б. 

Исходные данные: коэффициент приведения длины μ = 0,5. 
 
Решение 

Геометрические характеристики швеллера № 18 следующие: 

1 1

2 4 4
o20,7 см ; 1090 см ; 86 см ; 1,94 см.   x уA I I z  

Осевые моменты инерции составного сечения 
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1

42 2 1090 2180 см    x xI I ; 

1

2 2 42 ( ) 2 (86 (1,94 4) 20,7) 1632,7 см         у уI I b A . 

 

 
 
Рисунок 7.1 
 
Определяем радиусы инерции поперечного сечения: 

2180
7,26 см

2 2 20,7
  

 
х

x

I
i

А
; 

1632,7
6,28 см

2 2 20,7
  

 
у

у

I
i

А
. 

Вычисляем гибкость относительно материальной оси х: 

2

0,5 6
41,3

7,26 10
  

     



мат x

хi
. 

Находим гибкость относительно свободной оси у: 

2 2
2 2

2

0,5 6
40 40 62,3

6,28 10

     
              


св y

yi
. 

Максимальная гибкость  λmax = 62,3. 
 
Тестовые вопросы и задачи для самопроверки 
 
1 Условие устойчивости: 

а)  А F     ;                  в)  F А    ; 

б)  F А     ;                    г)  F А     . 
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2 Формула Ясинского для стального стержня справедлива при: 
а) 0 < 40  ;                            в) 40 < 100  ; 
б) 100 < 140  ;                        г) 100  . 

3 Формула Эйлера для стального стержня справедлива при: 
а) 0 < 40  ;                              в) 40 < 100  ; 
б) 80 < 140  ;                       г) 100  . 

4 Коэффициент приведения длины μ зависит от: 
а) гибкости стержня;                        в) величины критической силы; 
б) условий закрепления стержня;   г) формы поперечного сечения. 
 

5 Укажите свободные оси для поперечного 
сечения: 

а) только х; 
б) только у; 
в) нет свободных осей; 
г) х и у. 

 
6 Свободная ось составного сечения: 

а) не проходит через центр тяжести поперечного сечения; 
б) является главной центральной осью инерции; 
в) проходит через зазор между отдельными частями составного сечения; 
г) пересекает поперечное сечение по материалу составных частей. 

 
 
8 Определение перемещений с использованием интегралов 

Мора 
 
Пример – Для балки, загруженной равномерно распределенной нагрузкой 

(рисунок 8.1, а), определить интегралом Мора: 
1) прогиб в точке K (вертикальное перемещение точки KEIy ); 
2) прогиб в точке С (вертикальное перемещение точки СEIy ); 
3) угол поворота точки С ( СEI ). 
 
Решение 
 
Определяем вертикальные реакции в шарнирах А и В для заданной систе-

мы (см. рисунок 8.1, а).  
Для определения перемещений воспользуемся формулой Мора, применяе-

мой для стержней, испытывающих преимущественный изгиб: 
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1

1

( ) ( )
,

n
p

i
l

M z М z dz

EI

 
    

где Mp(z) – функция изгибающего момента от заданной внешней нагрузки;  

      1( )М z  – функция изгибающего момента от единичной нагрузки;  

      EI – жесткость балки при изгибе.  
 

  
Рисунок 8.1 
 
Для расчета прогиба в точке K составим вспомогательную систему, в кото-

рой приложим в точке K единичную силу и определим реакции на опорах (ри-
сунок 8.1, б). Заданная и вспомогательная системы делятся на три участка, для 
которых функции изгибающих моментов равны: 

1) участок (АК): 10 2 мz  : 

2
11 1 1( ) 8,4 0,5 4 ; ( ) 0,6pM z z z М z z       ; 

2) участок (КВ): 20 3 мz  : 

2 2
2 2 2 2( ) 8, 4 (2 ) 0,5 4 (2 ) 8,8 0,4 2pM z z z z z          ; 

1 2 2 2( ) 0,6 (2 ) 1 1,2 0,4М z z z z       ; 
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3) участок (СВ): 30 2 мz  : 

2
13( ) 0,5 4 ; ( ) 0pM z z М z     . 

Вычисляем: 

2 3
2 2

1 1 1 1 2 2 2 2
0 0

3

(8,4 0,5 4 ) 0,6 (8,8 0,4 2 )(1,2 0,4 )

8,64 11,16 19,8 кН м .

KEIy z z z dz z z z dz            

   

   

Для расчета прогиба в точке С составим вспомогательную систему, в кото-
рой приложим в точке С единичную силу и определим реакции на опорах (ри-
сунок 8.1, в). Заданная и вспомогательная системы делятся на два участка, для 
которых функции изгибающих моментов равны: 

1) участок (АВ): 10 5 мz  : 

2
11 1 1( ) 8,4 0,5 4 ; ( ) 0,4pM z z z М z z        ; 

2) участок (СВ): 20 2 мz  : 

2
12 2( ) 0,5 4 ; ( ) 1pM z z М z z       . 

Вычисляем: 

5 2
2 2

1 1 1 1 2 2 2
0 0

3

(8,4 0,5 4 ) ( 0,4 ) ( 0,5 4 )( 1 )

15 8 7 кН м .

СEIy z z z dz z z dz              

     

 
 

Для расчета угла поворота в точке С составим вспомогательную систему,  
в которой приложим в точке С единичный изгибающий момент и определим 
реакции на опорах (рисунок 8.1, г). Заданная и вспомогательная системы делят-
ся на два участка, для которых функции изгибающих моментов равны: 

1) участок (АВ): 10 5 мz  : 

2
11 1 1( ) 8, 4 0,5 4 ; ( ) 0, 2pM z z z М z z       ; 

2) участок (СВ): 20 2 мz  : 

2
12( ) 0,5 4 ; ( ) 1pM z z М z     . 

Вычисляем: 

5 2
2 2

1 1 1 1 2 2
0 0

2

(8, 4 0,5 4 ) 0, 2 ( 0,5 4 ) 1

7,5 5,33 2,17 кН м .

СEI z z z dz z dz             

   

   
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Тестовые вопросы и задачи для самопроверки 
 
1 Формула Мора для изгиба: 

а)
 

1 1

1

( ) ( )
;

n

i
l

М z М z dz

EI

 
        в)

 

1

1

( ) ( )n
p

i
l

M z М z dz

EI

 
  ; 

б)
 1

( ) ( )n
p p

i
l

M z M z dz

EI

 
    ;  г)

 

1

1

( ) ( )n
p

i
l

M z М z dz

EА

 
  . 

 
2 Формула Мора справедлива: 

а) для стержней любой жесткости; 
б) только для прямолинейных стержней; 
в) только для изгиба в балках; 
г) только для стержней постоянного поперечного сечения. 

3 Формула Мора не применяется: 
а) для стержней малой кривизны; 
б) для стержней большой кривизны; 
в) для стержней, испытывающих кручение; 
г) для стержней переменного поперечного сечения. 
 
 

9 Определение перемещений способом Верещагина 
 
Пример – Для балки, загруженной равномерно распределенной нагрузкой 

(рисунок 9.1, а), определить способом Верещагина: 
1) прогиб в точке K (вертикальное перемещение точки KEIy ); 
2) прогиб в точке С (вертикальное перемещение точки СEIy ); 
3) угол поворота точки С ( СEI ). 
 
Решение 
 
Перемещение (линейное и угловое) по способу Верещагина определяется 

по формуле 
 

1

n
p С

i
i х

y

ЕI

 
  , 

где n – число участков на балке;  
      ωр  – площадь грузовой эпюры Мр на участке; 

      Су  – ордината единичной эпюры 1М  под центром тяжести грузовой на этом 
же участке;  
      ЕIx – жесткость поперечного сечения на участке. 

Напоминаем правило знаков при перемножении: знак произведения поло-
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жительный, если обе координаты эпюр моментов располоены по одну сторону 
от оси стержня. 

 

 
 
Рисунок 9.1 
 
Воспользуемся вспомогательными системами, построенными для такой же 

задачи, решенной интегралами Мора (см. рисунок 8.1, б–г).  
Для заданной и вспомогательных систем построим эпюры изгибающих 

моментов (рисунок 9.1, б‒д).  
Для определения KEIy перемножим эпюры MP и 1М  по трем участкам (АК, 

КВ и ВС), мысленно разбив грузовую эпюру на составные части (треугольники 
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и сегменты) (см. рисунок 9.1, б, в). 
 

3 3

3

4 2 1 8,8 2 2 4 3 1 8,8 3 2
1,2 1,2 1,2 1,2

12 2 2 3 12 2 2 3

8 3 1
1,2 19,8 кН м .

2 3

KEIу
   

            


    

 

 

Для определения СEIy  перемножим эпюры MP и 1М  по двум участкам (АВ 
и ВС), мысленно разбив грузовую эпюру на составные части (треугольники и 
сегменты) (см. рисунок 9.1, б, г).  

 
3 3

35 8 2 4 5 1 2 8 2 4 2 1
2 2 2 2 7 кН м .

2 3 12 2 2 3 12 2СEIy
   

                

 
Знак «минус» указывает, что перемещение точки С не совпало с направле-

нием единичной силы. Балка прогнулась вверх, а не вниз, как предполагалось. 
Для определения СEI  перемножим эпюры MP и 1М  по двум участкам (АВ 

и ВС), мысленно разбив грузовую эпюру на составные части (треугольники и 
сегменты) (см. рисунок 9.1, б, д). 

 
3 3

25 8 2 4 5 1 2 8 4 2
1 1 1 1 2,17 кН м .

2 3 12 2 2 12СEI
   

               

 
Тестовые вопросы и задачи для самопроверки 
 
1 Площадь сегмента равна: 

а)
 

3 12;q            в)
 

3 6;q 
 
 

б)
 

2 12q  ;          г)
 

3 2q  . 
 

2 Правило Верещагина справедливо: 
а) для стержней большой кривизны; 
б) только для прямолинейных стержней; 
в) для стержней малой кривизны; 
г) только для стержней постоянного поперечного сечения. 
 

3 Для определения угла поворота во вспомогательной системе следует 
приложить: 

а) единичный крутящий момент; 
б) единичную поперечную силу; 
в) единичную продольную силу; 
г) единичный изгибающий момент. 
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10 Расчет простейших статически неопределимых 
стержневых систем методом сил 

 
Пример – Решить статически неопределимую балку (рисунок 10.1) мето-

дом сил. Построить эпюры поперечных сил и изгибающих моментов. 
 

 
 
Рисунок 10.1 
 
Решение 
 
Заданная балка один раз статически неопределима, т. е. она имеет одну 

лишнюю связь. Выбираем основную систему, отбрасывая одну связь, например 
опору А (рисунок 10.2, а). 

 

 
 
Рисунок 10.2 
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Составляем эквивалентную систему (рисунок 10.2, б). 
Каноническое уравнение метода сил один раз статически неопределимой 

системы имеет вид: 
 

11 1 1 0    рХ . 

Для определения коэффициентов канонического уравнения строим  
эпюры изгибающих моментов в грузовой (рисунок 10.2, в) и единичной (рису- 
нок 10.2, г) системах. 

Определяем коэффициент при неизвестной силе Х1 перемножением  
эпюры М1 на М1: 

 

31
11

1 1 2 9
3 3 3 м .

2 3
       
 

 cМ y

EI EI EI
 

 
Определяем свободный коэффициент ∆1р перемножением эпюры М1  

на эпюру Мр: 
 

3
3

1

1 1 1 1 2 20 3 1 427,5
10 3 3 160 3 3 3 кН м .

2 3 2 3 12 2

 
              

 
 P c

р

М y

EI EI EI
 

 
Решаем каноническое уравнение: 
 

1 1
9 427,5

0; 47,5 кНAХ Х R
EI EI

     . 

 
После определения реакции RA можно построить эпюры поперечных сил и 

изгибающих моментов обычным образом (рисунок 10.3). 
 

  
 

Рисунок 10.3 
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Тестовые вопросы и задачи для самопроверки 
 
1 Сколько раз статически неопреде-

лима балка: 
а) один;           в) три; 
б) два;             г) четыре. 

 

2 Основная система получается из заданной системы: 
а) удалением внешней нагрузки; 
б) удалением лишних связей; 
в) удалением внешней нагрузки и лишних связей; 
г) удалением шарнирных закреплений. 

3 Сколько канонических уравнений нужно составить для дважды статиче-
ски неопределимой системы: 

а) один;             б) два;               в) три;             г) четыре. 
 
 
11 Расчеты при продольном ударе 
 
Пример – Груз весом G = 10 кН падает с высоты h = 10 см на двутавровую 

стойку № 20 (А = 26,8 см2) длиной l = 4 м (рисунок 11.1, а). Модуль упругости 
Е = 2ꞏ105 МПа. Определить нормальное напряжение и укорочение стойки при 
ударе, если стойка не теряет устойчивость. 

 

 
 
Рисунок 11.1 
 
Решение 
 
Определим нормальное напряжение и укорочение стойки, соответствую-

щие статическому способу приложения силы (рисунок 11.1, б): 
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3
6

4

10 10
3,73 10 Па;

26,8 10ст
F

A 


    


 

3
4 2

11 4

10 10 4
0,746 10 м = 0,746 10 см.

2 10 26,8 10
ст

Fl

EA
 



 
     

  

 Динамический коэффициент 

2

2 2 10
1 1 1 1 1 51,8 52,8

0,746 10ст

h
k 


        

 
. 

Динамическое напряжение 

52,8 3,73 193 МПа.дин стk       

Укорочение стойки при ударе 

252,8 0,746 10 0,394 см.дин стk         
 
 
12 Расчеты при поперечном ударе 
 
Пример – На двутавровую балку № 20 длиной l = 9 м, свободно лежащую 

на двух шарнирных опорах, с высоты h = 45 мм падает груз G = 1,2 кН  
(рисунок 12.1). Модуль упругости материала Е = 2ꞏ105 МПа, осевой момент 
инерции двутавра Ix = 1840 см4, осевой момент сопротивления Wx = 184 см3. 

Определить  наибольшее нормальное напряжение и прогиб в месте паде-
ния груза. 

 

 
 
Рисунок 12.1 
 
Решение 
 
Рассчитываем балку на действие статической нагрузки: F = G = 1,2 кН 

(рисунок 12.2, а).  
Реакции на опорах 

0;АМ  3 9 0;ВF R        
3 1,2 3

0,4 кН;
9 9В

F
R

 
    



 36

0;ВМ  6 9 0;АF R        
6 1,2 6

0,8 кН.
9 9А

F
R

 
    

 

 
 
Рисунок 12.2 
 
Строим эпюру изгибающих моментов МР, по которой определяем макси-

мальный момент: Мmax = 2,4 кНꞏм. 
Определим максимальное нормальное напряжение, соответствующие ста-

тическому способу приложения силы: 
 

3
6max

6

2,4 10
13 10 Па = 13 МПа.

184 10ст
х

М

W 


    


 

Для определения прогиба ∆ст составим вспомогательную систему, в кото-
рой к балке прикладывается единичная сила (рисунок 12.2, б).  

Реакции на опорах 

0;АМ  1 3 9 0;ВR         
1 3 1

;
9 3ВR


   

0;ВМ  1 6 9 0;АR          
1 6 2

.
9 3АR


   

Строим эпюру изгибающих моментов М . 
Определяем прогиб балки при статическом действии нагрузки, перемно-

жая эпюры и РМ М  по правилу Верещагина:  
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3
3

11 8

1 1 2 1 2
3 2,4 2 6 2,4 2

2 3 2 3

14,4 10
3,9 10 м = 3,9 мм.

2 10 1840 10

ст
xEI




             
 


  

  

 

Определяем динамический коэффициент: 

2 2 45
1 1 1 1 5,9.

3,9ст

h
k


      


 

Наибольшее нормальное напряжение в балке при ударе 

5,9 13 76,7 МПа.дин стk       

Прогиб в месте падения груза 

5,9 3,9 23,01 мм.дин стk        

 

Тестовые вопросы для самопроверки 
 
1 Динамический коэффициент при ударе вычисляется по формуле: 

а) 1
a

k
q

  ;                                в) 
max

1 тk


 


; 

б) 
2

1 1
ст

k
h

  


;                       г) 
max

1 1 тk


  


. 

2 Теория удара предполагает, что удар: 
а) абсолютно упругий; 
б) абсолютно неупругий; 
в) упругопластический; 
г) вязкий. 

3 Динамические напряжения равны: 
а) (1 )дин ст k    ;                      в) /дин ст k   ; 

б) (1 )дин ст k    ;                   г) дин ст k    . 
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13 Колебания систем с одной степенью свободы 
 
Пример – На двутавровой балке № 20 установлен электродвигатель весом 

G = 6 кН, скорость вращения которого n = 300 об/мин (рисунок 13.1, а). Из-за 
дисбаланса вращающихся частей возникает вертикальная центробежная сила

( ) 2sinF t t  , амплитудное значение которой равно 2 кН. Модуль упругости 
материала Е = 2ꞏ105 МПа, осевой момент инерции двутавра Ix = 1840 см4, осе-
вой момент сопротивления Wx = 184 см3. Определить наибольшие нормальные 
напряжения и прогиб. 

 
Решение 
 
Определим наибольшее статическое напряжение от силы G в среднем се-

чении балки с максимальным изгибающим моментом 9 кНꞏм (рисунок 13.1, б): 
 

3
max

6

( ) 9 10
( ) 48,91 МПа.

184 10
ст

ст
x

M G
G

W 


   


 

 

 
 
Рисунок 13.1 
 
Прогиб середины пролета для балки, лежащей на двух опорах, вычислим и 

по известной формуле 
 

 
3 3 3

11 8

6 10 6
0,00734 м.

48 48 2 10 1840 10ст
x

G l
G

E I 

  
   

       
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Определим круговую частоту собственных (свободных) колебаний систе-
мы по формуле 

 

19,81
36,56 с ,

0,00734ст

g    


 

 

где g – ускорение свободного падения, 29,81м сg  ; 
∆ст – перемещение точки расположения колеблющейся массы (в данном 

случае двигателя) от собственного веса ∆ст(G). 
Определим динамический коэффициент при действии вибрационной 

нагрузки по формуле 
 

2 2

1 1
3,81,

31,4
1 1

36,56

k   
          

 

где θ – круговая частота действия вибрационной нагрузки, 

13,14 300
31,4 с .

30 30

n   
     

Определим нормальное напряжение от наибольшей величины вибрацион-
ной нагрузки F = 2 кН, приложенной статическим образом, в среднем сечении 
балки с максимальным изгибающим моментом 3 кНꞏм (рисунок 13.1, в): 

 

    3

6

3 10
16,30 МПа.

184 10
ст

ст
x

M F
F

W 


   

  

Прогиб середины пролета двухопорной балки от силы F 

 
3 3 3

11 8

2 10 6
0,00245 м.

48 48 2 10 1840 10ст
x

F l
F

E I 

  
   

       

Тогда динамические значения напряжения и прогиба 

    3,81 16,30 62,103 МПа;дин стF k F       

    3,81 0,00245 0,00934 м.дин стF k F       

∆дин(F) представляет собой амплитуду колебаний массы (двигателя),  
т. е. наибольшее отклонение от положения статического равновесия. Поэтому 
суммарный прогиб в середине пролета балки 

 

   max 0,00734 0,00934 0,01668м.ст динG F       
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Наибольшее нормальное напряжение 

   max 48,91 62,103 111,013 МПа.ст динG F         

 
Тестовые вопросы для самопроверки 
 
1 Число циклов колебаний системы, происходящих в 1 с, называется: 

а) периодом колебаний; 
б) частотой колебаний; 
в) круговой частотой колебаний; 
г) угловой скоростью. 

2 Колебания системы, вызванные начальным возмущением и совершаемые 
за счет энергии деформации при отсутствии постоянного внешнего воздей-
ствия, называются:  

а) периодическими колебаниями; 
б) свободными колебаниями; 
в) вынужденными колебаниями; 
г) автоколебаниями. 

3 На какую числовую характеристику гармонических свободных колеба-
ний системы с одной степенью свободы влияет учет сил сопротивления:  

а) амплитуда колебаний; 
б) частота колебаний; 
в) период колебаний; 
г) начальная фаза колебаний. 

 
 
14 Расчет толстостенных труб  
 
Пример 1 ‒ Определить, пользуясь третьей теорией прочности (наиболь-

ших касательных напряжений), необходимую толщину стенки трубы, наруж-
ный радиус которой равен 100 мм (рисунок 14.1). 

Труба подвержена внутреннему давлению рВ = 80 МПа, допустимое 
напряжение материала [σ] = 200 МПа. 

 
Решение 
 
Материал толстостенной трубы испытывает плоскую деформацию. Наибо-

лее напряженными являются точки на внутренней поверхности, в которых ра-
диальное и окружное главные напряжения одновременно достигают наиболь-
шей величины. В этих точках окружное напряжение σt больше, чем радиаль- 
ное σr , а радиальное ‒ сжимающее и равно внутреннему давлению рВ: 

 
2 2

1 2 32 2
; 0; .Н В

t В r В
Н В

r r
p p

r r


          

  
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Рисунок 14.1 
 

Эпюры распределения напряжений показаны на рисунке 14.1. 
Условие прочности по теории наибольших касательных напряжений (третья 

теория прочности) имеет вид: 
 

1 3 [ ].экв      

 
После преобразований 

2

2

2
[ ] = 200 МПа;

1
экв В

В

Н

p
r
r

   


 

6 6
2

3 2

2
80 10 [ ] = 200 10

1
(100 10 )

экв
В

.
r



     




 

Откуда rВ = 44 мм, а толщина стенки трубы δ = 100 ‒ 44 = 56 мм. 
 
Пример 2 ‒ Проверить прочность стальной трубы по третьей теории проч-

ности, если наружный радиус равен 70 мм, а внутренний радиус равен 65 мм. 
Труба находится под внешним давлением рВ = 20 МПа, допустимое напряжение 
материала [σ] = 160 МПа (рисунок 14.2). 

 
Решение 
 
В результате внешнего давления опасными являются точки внутренней 

поверхности (точки В), которые находятся в условиях одноосного сжатия под 
действием напряжений (см. рисунок 14.2):  

 
2

1 2 32 2

2
0 ; 0; Н

r t Н
Н В

r
р .

r r
          


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Рисунок 14.2 
 
Эквивалентное напряжение по теории наибольших касательных напряжений 

2

2 2

2
[ ];Н

экв Н
Н В

r
p

r r
   

  
2

6 6
2 2

2 0,07
20 10 150,7 10 Па 150,7 МПа [ ] = 160 МПа.

0,07 0,06экв


       


 

Условие прочности выполняется. 
 
Тестовые вопросы для самопроверки 
 
1 Толстостенными называются оболочки, у которых отношение толщины 

стенки   к внутреннему радиусу rB:  
а) больше 0,1; 
б) больше 0,2; 
в) больше 0,3; 
г) больше 0,4. 

2 Какое напряжение в толстостенном цилиндре постоянно по толщине 
стенки: 

а) окружное напряжение; 
б) радиальное напряжение; 
в) осевое напряжение; 
г) главное напряжение. 
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15 Расчет тонкостенных объектов 
 
Пример ‒ Рассчитать коническую часть тонкостенной оболочки вращения  

с толщиной стенки h = 0,03 м (рисунок 15.1). Давление внутри оболочки 
0,3 МПа,внP   удельный вес жидкости 4 31,5 10 Н/м .     

 

 
 
Рисунок 15.1   
 
Решение 
 
Рассмотрим отсеченную часть с действующими на нее силовыми фактора-

ми (см. рисунок 15.1). 
Проводим первое сечение через точку A . 

0; 0; 0; 0.m t m t         

Второе сечение проводим через точку B   на расстоянии  у = 0,15 м. 
Высота столба жидкости над этим сечением 10 0,15 9,85 м.H у         
Давление 

6 40,3 10 9,85 1,5 10 447750 Па.внp P            

В соответствии с уравнением Лапласа m t

m t

p

h

 
 

 
  для сечения В имеем 

0,15
0,212 м.

cos 0,707
t

m

R
   


 

Радиус кривизны 2R   для конуса равен  бесконечности, отсюда 

447750

0,212 0,03
t  ;   0,212 447750

3,16 МПа.
0,03t


    
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Третье сечение проведем через точку C   (у = 0,25 м). 
Высота столба жидкости над сечением 10 0,25 9,7 м.      

Давление  6 40,3 10 9,75 1,5 10 446250 Па.внp P             
В соответствии с уравнением равновесия нижней отсеченной части обо-

лочки имеем 
 

2 21
2 co s 0;

3m t t th R у p          

4 3 21
2 0,25 0,03 cos45 1,5 10 0,25 446250 0,25 0;

3m                

2,64 МПа.m   

В соответствии с уравнением Лапласа m t

m t

p

h

 
 

 
 для сечения С  имеем 

1

0,25
0,354 м.

cos 0,707
t

m

R
   


 

Радиус кривизны 2R  для конуса равен  бесконечности, отсюда 

446250
;

0,354 0,03
t      5,27 МПа.t   

 

Тестовые вопросы для самопроверки 
 
1 В тонкостенных оболочках отношение толщины к наименьшему диамет-

ру кривизны меньше...: 

а) 
1

5
;               б) 

1

10
;                 в) 

1

15
;              г) 

1

20
. 

2 Окружное и радиальное напряжения определяются: 
а) по формуле Журавского; 
б) по формуле Эйлера; 
в) по формуле Ляме; 
г) по формуле Ясинского. 
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