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Введение 

Целью преподавания дисциплины «Дискретная математика» является озна-
комление студентов с основными дискретными математическими моделями и 
методами, понятиями теории множеств и отношений, операциями алгебры логи-
ки, критериями полноты систем булевых функций, задачами анализа и синтеза 
логических схем, различными представлениями графов и операциями над гра-
фами, способами задания конечного автомата. 

Цель методических рекомендаций – помочь студентам в самостоятельной 
подготовке и выполнении задания к лабораторным занятиям по дисциплине. 
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1 Лабораторная работа № 1. Реализация операций  
над подмножествами заданного универсума 

Цель работы: изучить реализацию операций над подмножествами заданно-
го универсума. 

Порядок выполнения работы 

1 Изучить теоретические сведения. 
2 Получить задание у преподавателя, выполнить типовые задания в соответ-

ствии с заданным вариантом. 
3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 
2 Постановка задачи. 
3 Результаты исследования операций над подмножествами заданного  

универсума. 
4 Выводы. 

Основные теоретические положения 

Множество и его элементы обозначаются следующим образом: 
А = {a1, a2, a3} – множество, состоящее из трех элементов; 
А = {a1, a2, …} – множество, состоящее из бесконечного числа элементов. 

Множество может состоять из элементов, которые сами являются  
множествами. 

Пример 1 – Множество А = {1, 2} состоит из двух элементов 1, 2; но мно-
жество {А} состоит из одного элемента А. 

Если элемент a принадлежит множеству А, это записывается следующим 
образом: a  А. Если элемент a не принадлежит множеству А, то записывают 
так: a  А. Если какое-либо множество А включено в другое множество В, то ис-
пользуется запись А  В. Множество, содержащее конечное число элементов, 
называется конечным, если множество не содержит ни одного элемента,  
то оно называется пустым и обозначается . Принято считать, что пустое мно-
жество является подмножеством любого множества:   А, где А – любое мно-
жество. Таким образом, всякое множество содержит в качестве своих подмно-
жеств пустое множество и само себя. 

Для каждого множества М существует множество, элементами которого яв-
ляются подмножества множества М, и только они. Такое множество будем назы-
вать семейством множества М или булеаном этого множества и обозначать 2М,  
а множество М будем называть универсальным (универсумом или простран-
ством) и обозначать 1 или U. Мощностью булеана конечного множества являет-
ся количество всех подмножеств этого множества: .2|2| ||MM   
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Пример 2 – Пусть множество А = {1, 2} состоит из двух элементов 1, 2.  
Тогда множество 2А включает в себя пустое множество , два одноэлементных 
множества {1} и {2} и само множество А = {1, 2}, т. е. 2А = {, {1}, {2}, {1, 2}}. 

Объединением А и В называется множество А  В, все элементы которого 
являются элементами хотя бы одного из множеств А или В: 

 
А  В = {x  x  А или x  В}. 

 
Из определения следует, что А  А  В и В  А  В. Аналогично определя-

ется объединение нескольких  множеств. 
Пример 3 – Пусть А = {4, 5, 6}, В = {2, 4, 6}. Тогда А  В = {2, 4, 5, 6}. 
Пример 4 – Пусть А – множество чисел, которые делятся на 2, а В – множе-

ство чисел, которые делятся на 3: А = {2, 4, 6, …}, В = {3, 6, 9, …}. Тогда  
А  В – множество чисел, которые делятся на 2 или на 3: А  В = {2, 3, 4, 6, 8, 
9, 10, …}. 

Пересечением множеств А и В называется множество А  В, все элементы 
которого являются элементами обоих множеств А и В:  

 
А  В = {x  x  А и x  В}. 

 
Из определения следует, что А  В  А,  А  В  В и А  В  А  В. Анало-

гично определяется пересечение нескольких  множеств. 
Пример 5 – Пусть А = {4, 5, 6}, В = {2, 4, 6}. Тогда А  В  = {4, 6}. 
Пример 6 – Пусть А – множество чисел, которые делятся на 2, а В – множе-

ство чисел, которые делятся на 3: А = {2, 4, 6, …}, В = {3, 6, 9, …}. Тогда  
А  В – множество чисел, которые делятся и на 2, и на 3: А  В = {6, 12,  
18, …}. 

Может оказаться, что множества не имеют ни одного общего элемента.  
Тогда говорят, что множества не пересекаются или что их пересечение – пустое 
множество. 

Пример 7 – Пусть А = {1, 2}, В = {2, 3}, C = {3, 4}. Тогда А  В  C = . 
Разностью между множеством А и множеством В называется множество 

А \ В, все элементы которого являются элементами множества А, но не являются 
элементами множества В: 

 

А \ В = {x  x  А и x  В}. 
 
Пример 8 – А = {4, 5, 6}, В = {2, 4, 6}. А \ В = {5}, В \ А= {2}. 
Пример 9 – А = {2, 4, 6, …}, В = {3, 6, 9, …}. Тогда А \ В – множество  

чисел, которые делятся  на 2, но не делятся на 3, а В \ А – множество чисел, кото-
рые делятся на 3, но не делятся на 2: А \ В = {2, 4, 8, 10, 14, …}. В \ А = {3, 9,  
15, 21, 27, …}. 

Симметрической разностью множеств А и В  называется множество  
 

А ∆ В = (А \ В)  (В \ А) = (А  В) \ (А  В). 
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Пример 10 – А = {4, 5, 6}, В = {2, 4, 6}. А \ В = {5}, В \ А= {2},  
А ∆ В = {2, 5}. 

Пример 11 – А = {2, 4, 6, …}, В = {3, 6, 9, …}, А \ В = {2, 4, 8, 10, 14, …}. 
В \ А = {3, 9, 15, 21, 27, …}, А ∆ В = {2, 3, 4, 8, 9, …}. 
ДополнениемM  множества М является множество  
 

M  = {mi│mi  }. 
 

Пример 12 – Заданы множества А = {1, 2, 5, 6} и В = {2, 3, 4, 6} на универ-
сальном множестве U = {1, 2, 3, 5, 6, 7}. Выполнить операции A , B . 

 

Решение 
 

В результате выполнения заданных операций получим следующие множе-
ства:  A  = {3, 7};B  = {1, 5, 7}. 

Для конечных множеств существует понятие: мощность множества А – чис-
ло его элементов. Обозначают мощность множества А. 

Пример 13 – А = {1, 2, 5, 6}, тогда мощность множества А = n(А) = 4;  
 = 0; {} = 1. 

Также справедлива следующая формула для любых множеств А и В: 
 

А  В = А + В – А  В, 
 

т. е. учитываются общие для обоих множеств элементы. 
Для наглядного представления множеств и отношений между ними исполь-

зуются диаграммы Венна (рисунок 1). Универсальное множество изображают в 
виде прямоугольника, а множества, входящие в универсальное множество, –  
в виде геометрических фигур внутри прямоугольника; элементу множества со-
ответствует точка внутри фигуры. 

Разбиением множества Х называется совокупность попарно непересекаю-
щихся подмножеств Х таких, что каждый элемент множества Х принадлежит од-
ному, и только одному из этих подмножеств. 

 

 
А ∆ В 

 
A  

 
А  В 

 
Рисунок 1 – Диаграммы Венна с операциями над множествами 
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А  В 

 
А \ В 

 

 
Окончание рисунка 1 
 
Примеры разбиений множества. 
Пример 14 – Х = {1, 2, 3, 4, 5}, тогда {{1, 2}, {3, 5}, {4}} – разбиение мно-

жества Х. 
Пример 15 – Пусть Х – множество студентов университета. Тогда разбиени-

ем этого множества является, например, совокупность студенческих групп. 

Контрольные вопросы и задания 

1 Выяснить, какие из следующих утверждений имеют место: 
а) ;aa  
б) ;aa  
в) };{aa  
г) };{aa   
д) };{aa   

е) ;  
ж) };{  
з) };{aa   
и) };{  
к) .}{ aa   

2 Какие из приведенных соотношений верны (ответ обосновать): 
а) }};3{},2{},1{{}3,1{};3},1{{}3{}};3,2,1{{1   
б) }};3{},2{},1{{}2{}};3,1{{}3,1{};3,2,1{}2{   
в) }};3{},2{},1{{1}};3{},2{},1{{}3{)};3,2,1{{3   
г) }};3{},2{},1{{}2,1{}};2,1{{}2,1{}};3,2{,1{1   
д) }};3{},2{},1{{}2,1{}};3{},2{},1{{2};3,2,1{}2{   
е) }};3{},2{},1{{3}};2,1{{}2,1{}};3,2,1{{2   
ж) };3,2,1{}3,2{}};3{},2{},1{{}2{};3},2,1{{3   
з) };3},2,1{},1{{}2,1{}};2,1{{}2,1{};3,2,1{}2{   
и) }};3{,2,1{}}3{,1{}};3{},2{},1{{}3{};3,2,1{}3{   
к) }}.3{},2{},1{{}3,2{}};3{,2,1{}2,1{}};3,2,1{{2   

3 Какие из приведенных соотношений верны (ответ обосновать): 
а) };3},2{,1{}1{};3,2,1},1{{}3,1{};3,2,1{}1{   
б) }};3},2{},1{{}3,1{}};3,2{},1{{}3,2{}};3,2,1{{}1{   
в) }};3{},2{,1{}}3{,1{};3},2{},1{{}3},1{{}};3,2,1{{2   
г) }};3,2{,2,1{}}2{,1{};3,2,1},1{{}3,2{};3,2},1{{1   
д) }};3{},2{},1{{}3,1{}};3,2{},1{{}2,1{};3},2{,1{}1{   
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е) }};3,2{,2},1{{}2{};3,2,1},1{{}3,1{}};3{,2,1{3   
ж) };3},2{},1{{}2,1{}};3,2,1{{}3,2,1{};3,2},1{{}1{   
з) };3},2{,1{}3,2{}};3,2{},2{,1{}2,1{};3,2,1{}3{   
и) };3,2,1{}3,2,1{}};3{},2{,1{}3,1{};3,2},1{{2   
к) }.3},2{,1{}3{};3,2,1},1{{}2},1{{};3,2,1{}2{   

4 Привести примеры множеств A, B, C, D и F, которые удовлетворяют за-
данным условиям: 

а) ;,,, FDDCCBBA   
б) ;,,, FDDCCBBA   
в) ;,,, FDDCCBBA   
г) ;,,, FDDCCBBA   
д) ;,,, FDDCCBBA   

е) ;,,, FDDCCBBA   
ж) ;,,, FDDCCBBA   
з) ;,,, FDDCCBBA   
и) ;,,, FDDCCBBA   
к) .,,, FDDCCBBA   

5 Определить, является ли утверждение правильным:  
а) ;, CACBBA   
б) ;, CACBBA   
в) ;, CACBBA   
г) ;, CACBBA   
д) ;, CACBBA   

е) ;, CACBBA   
ж) ;, CACBBA   
з) ;, CACBBA   
и) ;, CACBBA   
к) ., CACBBA   

Ответ следует обосновать. Если утверждение неправильное, вместе с контр-
примером привести несколько примеров, для которых утверждение выполняется. 

6 Для заданного множества A определить множество всех подмножеств 
множества A, т. е. булеан множества A: 

а) ;}}3{,2,1{A  
б) ;}}{},1{,{ A  
в) ;}}2,1{},2{,1{A  
г) ;}1},{,{ A  
д) ;}}2,1{},1{,1{A  

е) ;}3},2{,1{A  
ж) ;}2},1{,{A  
з) ;}}2,1{,,1{ A  
и) ;}}2{},1{,{A  
к) }.}2,1{},{,1{ A  

7 Пусть }10,9,8,7,6,5,4,3,2,1{U  – универсальное множество, 
}6,5,3,1{A , }7,5,3,2,1{B , }8,7,5,2{C , }10,9,7,4,1{D ; определить из 

каких элементов состоит множество: 
а) );\()\)(( CADBA   

б) ;))\()(( DCBCA   

в) ;))()\(( ACDCB   

г) ;))(( DCBA   

д) );()( CDBA   

е) ;))()(( DBACA   

ж) );()\( CABD   

з) );()\( CDAB   

и) );()\)(( CBADB   

к) ).()\( CBDA   
8 С помощью диаграмм Венна проверить правильность теоретико-

множественных равенств: 
а) );()()( CABACBA   
б) );\(\)\(\)\( CBCACBA   
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в) );\()\()(\ CABACBA   
г) );\()\(\)( CBCACBA   
д) );\()\()(\ CABACBA   
е) );(\)()\( CABACBA   
ж) );\)((\)\(\ CBAACBA   
з) ;)()\()\()\( CBACBAACCBBA   
и) );(\))(\)(()\( CBACABACBA   
к) )).()((\))()(()( CABACABACBA   

2 Лабораторная работа № 2. Исследование свойств отношений 

Цель работы: изучить свойства отношений: симметрию, антисимметрию, 
рефлексивность, антирефлексивность, транзитивность, полноту. 

Порядок выполнения работы 

1 Изучить основные теоретические положения, сделав необходимые  
выписки в конспект. 

2 Получить задание у преподавателя, выполнить типовые задания в соответ-
ствии с заданным вариантом. 

3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 
2 Постановка задачи. 
3 Результаты исследования. 
4 Выводы. 

Основные теоретические положения 

Бинарным отношением R называется множество упорядоченных пар. Если R 
есть некоторое отношение и пара (х, у) принадлежит этому отношению, то упо-
требляется запись (х, у) R или х R у. Элементы х и у называются координатами 
или компонентами (объектами) отношения R. Если х и у – компоненты (объек-
ты), то через (х, у) обозначают упорядоченную пару. Равенство упорядоченных 
пар определяется следующим образом: (а, b) = (с, d) := а = с и b = d (:= – опера-
ция присваивания). 

Областью определения бинарного отношения R называется множество 
DomR = {x |существует такое у, что х R у}. Областью значений бинарного отно-
шения R называется множество ImR = {y | существует такое x, что х R у}. 

Так как бинарное отношение – множество, то способы задания бинарного 
отношения такие же, как и способы задания множества. Бинарное отношение 
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может быть задано перечислением упорядоченных пар или указанием общего 
свойства упорядоченных пар. 

Кроме того, бинарное отношение может быть задано матрицей бинарного 
отношения. Пусть А = {a1, a2, …, an} – конечное множество. Матрица бинарного 
отношения C есть квадратная матрица порядка n, элементы которой cij опреде-
ляются следующим образом: 

 

cij = 
1,  если   ;

0,  в противном случае.

i ja R a



 

 

Пример 1 – А = {1, 2, 3, 4}. Зададим бинарное отношение R тремя перечис-
ленными способами. 

1 R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} – отношение задано перечисле-
нием всех упорядоченных пар. 

2 R = {( ai, aj) ai < aj; ai, aj  А} – отношение задано указанием свойства 
«меньше» на множестве А. 

3 Отношение задано матрицей отношения C: 
 

0 1 1 1

0 0 1 1
.

0 0 0 1

0 0 0 0

C

 
 
 
 
 
 

 

 

Пусть даны два множества Х и Y. Прямым (декартовым) произведением 
двух множеств Х и Y называется совокупность всех упорядоченных пар (х, у), та-
ких, что х  Х и у  Y. Обозначается прямое произведение множеств Х и Y через 
Х × Y:   Х × Y := {(х, у) х  Х и у Y}. 

Каждое отношение R есть подмножество прямого произведения некоторых 
множеств Х и Y таких, что DomR  Х и ImR  Y, т. е. R  Х  Y. Если Х = Y,  
то говорят, что R есть отношение на множестве Х, и тогда R  Х2. 

Пример 2 – Пусть Х = {1, 2, 3}, Y = {0, 1}. Тогда  
Х  Y = {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)}; 
Y  Х = {(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3)}. 
Пусть R есть отношение на множестве Х. Введем понятия: обратное отно-

шение: R-1 = {(х, у) (у, х)  R}; дополнение отношения: R = {(х, у)  (х, у)R}; 
тождественное отношение: I = {(х, x)  х  X }. Композицией отношений R1 и R2 
называется отношение R1 О R2 = {(х, z)  существует у такое, что (х, у)  R1 и  
(у, z) R2}. Для любых бинарных отношений выполняются следующие свойства: 

1) (R-1)-1 = R;   
2) R2 О R1 = R1 -1 О R2 

-1. 
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Пример 3 – R = {(x, y) y = xsin }. S = {(x, y) y = x }. 
RS = {(x, z) существует такое y, что (x, y)  R и (y, z)  S} = {(x, z)  су- 

ществует такое y, что y = xsin  и z = y } = {(x, z)  z = xsin }. 

Отношение R называется рефлексивным на множестве X, если для любого 
x  X выполняется x R x. Из определения следует, что всякий элемент (x, x)  R. 

Пример 4 – Пусть X – конечное множество, X = {1, 2, 3} и R = {(1, 1), (1, 2), 
(2, 2), (3, 1), (3, 3)}. Отношение R рефлексивно. Если X – конечное множество, то 
главная диагональ матрицы рефлексивного отношения содержит только едини-
цы. Для данного примера 

 

1 1 0

0 1 0 .

1 0 1

C

 
   
 
 

 

 
Пример 5 – Пусть X – множество действительных чисел и R – отношение ра-

венства. Это отношение рефлексивно, т. к. каждое число равно самому себе.  
Отношение R называется симметричным на множестве X, если для любых x, 

y  X из x R y следует y R x. Очевидно, что R симметрично тогда, и только тогда, 
когда R = R–1. 

Пример 6 – Пусть X – конечное  множество, X = {1, 2, 3} и R = {(1, 1),  
(1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3)}. Отношение  симметрично. Если X – ко-
нечное множество, то матрица симметричного отношения симметрична относи-
тельно главной диагонали: 

 

1 1 1

1 1 0 .

1 0 1

C

 
   
 
   

Пример 7 – Пусть X – множество действительных чисел и R – отношение 
равенства. Это отношение симметрично, т. к. если x равно y, то и y равно x. 

Отношение R называется транзитивным на множестве X, если для любых x, 
y, z  X из x R y и y R z  следует x R z. Одновременное выполнение условий  
x R y, y R z, x R z означает, что пара (x, z) принадлежит композиции RR. Поэтому 
для транзитивности R необходимо и достаточно, чтобы множество RR являлось 
подмножеством R, т. е. RR  R. 

Пример 8 – Пусть X – конечное  множество, X = {1, 2, 3} и R = {(1, 1),  
(1, 2), (2, 3), (1, 3)}. Отношение R транзитивно, т. к. наряду с парами (x, y) и (y, z) 
имеется пара (x, z). Например, наряду с парами (1, 2) и (2, 3) имеется пара (1, 3). 

Пример 9 – Пусть бинарное отношение R на множестве M задано в виде 
диаграммы, состоящей из узлов и стрелок так, что узлам взаимно однозначно со-
ответствуют элементы множества М, а стрелкам, соединяющим пару а и b  
в направлении от а к b, – наличие отношения a R b. Определить графические 
особенности диаграммы в зависимости от характера свойств отношения R. 
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1 Отношение RMM рефлексивно, если a R а для любых аМ. Соответ-
ствующая диаграмма рефлексивного отношения должна содержать петли во всех 
узлах (то есть стрелки, начинающиеся и заканчивающиеся в одном узле). 

2 Отношение R антирефлексивно, если ни для каких а  М не выполняет- 
ся a R а. Диаграмма антирефлексивного отношения не должна содержать ни од-
ной петли. 

3 Отношение R симметрично, если из a R b следует b R а. В диаграмме сим-
метричного отношения для каждой стрелки, соединяющей два узла, существует 
также стрелка, соединяющая эти узлы в обратном направлении. 

4 Отношение R антисимметрично, если из a R b и b R a следует а = b.  
В диаграмме антисимметричного отношения не существует двух различных уз-
лов, связанных парой разнонаправленных стрелок. 

5 Отношение R транзитивно, если  из a R b и b R c следует a R с. В диаграм-
ме транзитивного отношения для любых двух стрелок таких, что одна направле-
на от а к b, а другая – от b к с, существует стрелка, соединяющая а и с  
в направлении от а к с. 

Отношение эквивалентности – бинарное отношение, являющееся рефлек-
сивным, симметричным и транзитивным. 

Примеры отношений эквивалентности. 
Пример 10 – Отношения равенства, параллельности прямых. 
Пример 11 – Отношение между элементами множества всех многоугольни-

ков: «иметь одинаковое число сторон». 
Пример 12 – Отношение принадлежности к одной студенческой группе на 

множестве студентов института – отношение эквивалентности. 
Классом эквивалентности, порожденным элементом х, называется подмно-

жество множества Х, состоящее из тех элементов у  Х, для которых х R у – 
класс эквивалентности, порожденный элементом х, обозначается через [х]: 

 

[х] = {у | уХ и х R у}. 
 

Пример 13 – Отношение равенства на множестве Z порождает следующие 
классы эквивалентности: для любого элемента х  Z [х] = {х}, т. е. каждый класс 
эквивалентности состоит из одного элемента – числа х. 

Пример 14 – Множества подобных друг другу треугольников в разных 
классах – треугольники разной формы. 

Пример 15 – Для отношения принадлежности к одной студенческой группе 
классом эквивалентности является множество студентов этой группы. 

Отношения порядка – важный тип бинарных отношений. Отношение стро-
гого порядка – бинарное отношение, являющееся антирефлексивным, антисим-
метричным и транзитивным. Примерами могут служить отношения «больше», 
«меньше», «старше» и т. п. Для чисел обычное обозначение – знаки < и >. 

Рефлексивное, антисимметричное и транзитивное отношение называется 
отношением частичного (нестрогого) порядка на множестве Х и обозначается 
символом . 
  



14 

Примеры отношений частичного порядка. 
Пример 16 – Отношение х  у на множестве действительных чисел R есть 

отношение частичного порядка. 
Пример 17 – Во множестве подмножеств некоторого универсального мно-

жества U отношение А  В есть отношение частичного порядка. 
Пример 18 – Схема организации подчинения в учреждении – отношение  

частичного порядка на множестве должностей. 
Отношение частичного порядка на множестве Х, для которого любые два 

элемента сравнимы, т. е. для любых х, уХ х  у или у  х, называется отношени-
ем линейного порядка. 

Примеры отношений линейного порядка. 
Пример 19 – Отношение х  у на множестве R есть отношение линей- 

ного порядка. 
Пример 20 – Во множестве подмножеств некоторого универсального мно-

жества U отношение А  В не является отношением линейного порядка. 

Контрольные вопросы и задания  

1 Каковы свойства отношений, заданных: 
а) на множестве натуральных чисел N: R1 – «быть не больше »; 
б) на множестве натуральных чисел N: R2 – «быть делителем»; 
в) на множестве натуральных чисел N:  R3 – «быть равным»; 
г) на множестве точек действительной плоскости  : R4 – «нахо-

диться на одинаковом расстоянии от начала координат»; 
д) на множестве точек действительной плоскости  : R5 – «быть 

симметричным относительно оси X»; 
е) на системе множеств 2М: R6 – «пересекаться с …» (иметь непустое 

пересечение); 
ж) на системе множеств 2М: R7 – «являться строгим включением с …»; 
з) на множестве людей: R8 – «быть сыном»;  
и) на множестве людей: R9 – «жить в одном городе»;  
к) на множестве людей: R10 – «быть братом»; 
л) на множестве элементов структуры (рисунок 2): R11 – «быть непо-

средственно связанным с …»; 
м) на множестве элементов структуры (см. рисунок 2): R12 – «быть  

начальником». 
 

 
Рисунок 2 – Структура элементов множества 
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2 Определить, является ли отношение R на множестве }4,3,2,1{B  сим-
метричным, антисимметричным, рефлексивным, антирефлексивным, транзитив-
ным, полным; построить диаграмму, график и матрицу отношения R, если: 

а) )}2,4(),1,4(),3,3(),2,3(),4,2(),3,2(),2,2(),4,1{(R ; 
б) )}4,4(),2,4(),3,3(),2,3(),4,2(),3,2(),2,2(),2,1{(R ; 
в) )}4,4(),2,4(),3,3(),1,3(),4,2(),2,2(),3,1(),1,1{(R ; 
г) )}4,4(),1,4(),3,3(),1,3(),4,2(),3,2(),2,2(),1,1{(R ; 
д) )}1,4(),4,3(),1,3(),2,1(),1,2(),4,1(),3,1{(R ; 
е) )}4,4(),3,4(),2,4(),4,3(),3,3(),4,2(),2,2(),4,1(),2,1(),1,1{(R ; 
ж) )}3,4(),1,4(),4,2(),3,2(),2,2(),3,1(),2,1(),1,1{(R ; 
з) )}1,4(),2,3(),1,3(),4,2(),3,2(),1,2(),4,1(),3,1{(R ; 
и) )}4,4(),3,4(),3,3(),2,3(),1,3(),4,2(),2,2(),4,1(),2,1(),1,1{(R ; 
к) )}4,4(),3,3(),1,3(),4,2(),2,2(),1,2(),4,1(),3,1{(R . 

3 Пусть заданы множества },,,{ dcbaA  , }5,4,3,2,1{B  и },,{ G ,  
а также отношения между A и B, B и G: 

)};3,(),2,(),5,(),4,(),1,(),3,(),2,{(1 ddccbaaC   
)};5,(),4,(),1,(),4,(),1,(),5,(),3,{(2 dddccbbC   

)};4,(),2,(),1,(),5,(),4,(),1,(),3,(),2,{(3 dddccbaaC   
)};,5(),,5(),,3(),,2(),,2(),,1(),,1{(1 D  

)};,4(),,4(),,3(),,2(),,2(),,1{(2 D  
)}.,5(),,4(),,4(),,3(),,3(),,2(),,2(),,1{(3 D  

Определить композицию отношений: 

а) );( 1
131
DDC   

б) ;1
13
CC   

в) ;1
12
CC   

г) );( 1
123
DDC   

д) ;1
1

1
3

 CD   

е) );( 1
312
DDC   

ж) );( 1
212
DDC   

з) ;1
23
CC   

и) ;1
2

1
1

 CD   

к) ).( 1
111
DDC   

4 Пусть на множестве P людей (см. рисунок 2) определены отношения 
; 

}.сыномявляется,,|),{( yxPyxyxD   
Построить диаграмму и дать содержательное описание отношения: 

а) ;FF   
б) ;DD  
в) ;DF   
г) ;FD  

д) ;1FD   

е) ;1 DF   

ж) ;1DF   

з) ;11  DF   

и) ;1 FD   

к) .11  DD 
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3 Лабораторная работа № 3. Операции над графами 

Цель работы: изучить операции над графами для образования новых гра-
фов из нескольких более простых. 

Порядок выполнения работы 

1 Изучить основные теоретические положения, сделав необходимые  
выписки в конспект. 

2 Получить задание у преподавателя, выполнить типовые задания. 
3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 
2 Постановка задачи. 
3 Результаты исследования. 
4 Выводы. 

Основные теоретические положения 

Пусть G1(X1, E1) и G2(X2, E2) – произвольные графы. Объединением G1G2 
графов G1 и G2 называется граф с множеством вершин X1X2 и с множеством 
ребер (дуг) E1E2. 

Рассмотрим операцию на примере графов G1(X1, E1) и G2(X2, E2), приведенных 
на рисунке 3. Множества вершин первого и второго графов определяются как  
X1 = {x1, x2, x3} и X2 = {x2, x3, x4}, а множество вершин результирующего графа –  
X = X1X2 = {x1, x2, x3, x4}. Аналогично определяем множества дуг графа: 

E1 = {(x1, x2), (x1, x3), (x2, x1), (x3, x3)};  E2 = {(x2, x4), (x3, x2), (x4, x3)}; 
E = {(x1, x2), (x1, x3), (x2, x1), (x3, x3), (x2, x4), (x3, x2), (x4, x3)}.  
Результирующий граф G(X, E) = G1(X1, E1)G2(X2, E2) также приведен  

на рисунке 3. 
 

21 GG 2G1G  

Рисунок 3 – Операция объединения графов 
 

Операция объединения обладает следующими свойствами, которые следуют 
из определения операции и свойств операций на множествах: 
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G1  G2 = G2  G1 – свойство коммутативности;  
G1  (G2  G3)  = (G1  G2)  G3 – свойство ассоциативности. 
Операция объединения графов может быть выполнена в матричной форме. 
Пусть G1(X1, E1) и G2(X2, E2) – произвольные графы. Пересечением G1  G2 

графов G1 и G2 называется граф с множеством вершин X1  X2, с множеством ре-
бер (дуг) E = E1  E2. 

Операция пересечения обладает свойствами, которые следуют из определе-
ния операции и свойств операций на множествах: 

G1  G2 = G2  G1– свойство коммутативности; 
G1  (G2  G3)  = (G1  G2)  G3 – свойство ассоциативности.  
Для того чтобы операция пересечения была всеобъемлющей, необходимо 

ввести понятие пустого графа. Граф G(X, E) называется пустым, если множест- 
во X вершин графа является пустым (X = ). Заметим, что в этом случае и мно-
жество E ребер (дуг) графа также пустое множество (E = ). Пустой граф обо-
значается символом . Такой граф может быть получен в результате выполне-
ния операции пересечения графов, у которых X1  X2=. В этом случае говорят 
о непересекающихся графах. 

Рассмотрим выполнение операции пересечения графов, изображенных на 
рисунке 3. Для нахождения множества вершин результирующего графа запишем 
множества вершин исходных графов и выполним над этими множествами опе-
рацию пересечения: 

X1 = {x1, x2, x3}; X2 = {x1, x2, x3, x4}; 
X = X1  X2 = {x1, x2, x3}. 
Аналогично определяем множество E дуг результирующего графа: 
E1 = {(x1, x2), (x1, x3), (x2, x1), (x2, x3), (x3, x2)}; 
E2 = {(x1, x3), (x2, x1), (x2, x3), (x2, x4), (x4, x1)}; 
E = E1E2 = {(x1, x3), (x2, x1)}. 
Графы G1(X1, E1), G2(X2, E2) и их пересечение приведены на рисунке 4. 
 

21 GG 2G1G
 

 
Рисунок 4 – Операция пересечения графов 

 
Операция пересечения графов может быть выполнена в матричной форме. 
Пусть G1(X, E1) и G2(X, E2) – два графа с одним и тем же множеством вер-

шин X. Композицией G1(G2) графов G1 и G2 называется граф с множеством  
дуг E, в котором существует дуга (xi, xj) тогда, и только тогда, когда существует 
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дуга (xi, xk), принадлежащая множеству E1, и дуга (xk, xj), принадлежащая  
множеству E2. 

Рассмотрим выполнение операции композиции G1(G2) на графах, изображен-
ных на рисунке 5. Для рассмотрения операции составим таблицу 1, в первом столб-
це которой указываются дуги (xi, xk), принадлежащие графу G1, во втором – дуги 
(xk, xj), принадлежащие графу G2, а в третьем – результирующее ребро (xi, xj) для 
графа G1(G2). 

Таблица 1 – Композиция графов 

G1 G2 G1(G2) 
(x1, x2) (x2, x1) 

(x2, x3)
(x1, x1) 
(x1, x3) 

(x1, x3) (x3, x3) (x1, x3) 

(x2, x1) (x1, x1) 
(x1, x3)

(x2, x1) 
(x2, x3) 

 
Заметим, что дуга (x1, x3) результирующего графа в таблице встречается 

дважды. Однако поскольку рассматриваются графы без параллельных ребер 
(дуг), то в множестве E результирующего графа дуга (x1, x3) учитывается только 
один раз, т. е. E = {(x1, x1), (x1, x3), (x2, x1), (x2, x3)}. 

На рисунке 5 изображены графы G1, G2 и их композиция G1(G2). На этом же 
рисунке изображен граф G2(G1). Рекомендуется самостоятельно построить граф 
G2(G1) и убедиться, что графы G1(G2) и G2(G1) неизоморфны. 

x2

x1 x3

x2

x1

1G

x3

x2

x1

)( 21 GG

x3

x2

x1

)( 12 GG

x3

2G
 

Рисунок 5 – Композиции графов 
 

Пусть G = (V, E) – орграф, где V = {v1, …, vn}. Матрицей достижимости ор-
графа G называется квадратная матрица Т(G) = [tij] порядка n, у которой tij = 1, 
если вершина vj достижима из vi, и tij = 0 – в противном случае.  

Матрицей сильной связности орграфа G называется квадратная матрица 
S(G) = [sij] порядка n, у которой sij = 1, если вершина vi достижима из vj и одно-
временно вершина vj достижима из vi, и sij = 0 – в противном случае, т. е. sij = 1 
тогда и только тогда, когда вершины vi, vj  принадлежат одной компоненте силь-
ной связности орграфа G. 

Пусть G = (V, E) – орграф, где V = {v1, …, vn}. Матрицей связности графа G 
называется квадратная матрица S(G) = [sij] порядка n, у которой sij = 1, если i = j 
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или существует маршрут, соединяющий вершины vi, vj, и sij = 0 – в противном 
случае (т. е. sij = 1 тогда и только тогда, когда вершины vi, vj принадлежат одной 
компоненте связности орграфа G). 

Контрольные вопросы и задания  

Даны графы 1G  и 2G . Найти 1G  2G , 1G  2G , 1G  ( 2G ), 2G  ( 1G ). Для графа 

1G  2G  найти матрицы смежности, инцидентности, сильных компонент  
(рисунок 6). 

 
Вариант Графы 1G  и 2G  Вариант Графы 1G  и 2G  

1 9 

2 10 

3 11 

4 12 

5 13 

 
6 14 

 
7 15 

8 

 

16 

 
Рисунок 6 – Варианты контрольных заданий 
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Вариант Графы 1G  и 2G  Вариант Графы 1G  и 2G  

17 22 

18 23 

19 

 

24 

20 

 

25 

21 26 

 
Окончание рисунка 6 
 

4 Лабораторная работа № 4. Решение задач теории графов  
в системе компьютерной алгебры 

Цель работы: изучить основные функции компьютерной алгебры Maple 
для решения задач теории графов. 

Порядок выполнения работы 

1 Изучить основные теоретические положения, сделав необходимые выпис-
ки в конспект. 

2 Получить задание у преподавателя, выполнить типовые задания. 
3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 
2 Постановка задачи. 
3 Результаты исследования. 
4 Выводы. 
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Основные теоретические положения 

Система Maple хорошо зарекомендовала себя при изучении учебных дисци-
плин, позволяя решать задачи, связанные с графами. Некоторые команды, реали-
зуемые в Maple (использование функций): 

Graph() – для задания графа; 
CompleteGraph() – для создания полного графа; 
DrawGraph(G,style=cycle) – для соединения графа по контуру; 
New(G) – для создания пустого графа; 
RandomGraph(G) – для создания случайного графа; 
Graph ([количество вершин]) – для создания графа без ребер; 
AddEdge(G,{},inplace=false) – для добавления ребер в граф, третий опера-

тор необязателен. Он используется, если измененный граф не нужно сохранять и 
распечатывать; 

AddVertex(G,[]) – для добавления вершин в граф; 
DeleteEdge(G,{})/Vertex(G,[]) – для удаления ребер и вершин из графа; 
DrawGraph(G) – для построения графа; 
GraphUnion(G1,G2) – для объединения двух графов; 
AdjacencyMatrix(G) – для нахождения матрицы смежности; 
IncidenceMatrix(G) – для нахождения матрицы инцидентности; 
WeightMatrix(G) – для нахождения весов ребер; 
IsNetwork(G) – для нахождения начальных и конечных вершин; 
DijkstrasAlgoritm(G, ‘s’, ‘t’) – для нахождения кратчайшего расстояния,  

где s – начало, t – конец маршрута. 
Для работы с графами в Maple предназначена библиотека GraphTheory.  

Команда подключения этой библиотеки стандартная, т. е. достаточно воспользо-
ваться оператором with в Maple 14:  

>with(GraphTheory): 

Двоеточие после функции ставится в случае, если не требуется отображать 
ее результат. В этом случае функция все равно выполняется. 

Создадим граф с четырьмя вершинами и четырьмя дугами 

>G := Graph({{1, 2}, {1, 3}, {2, 3}, {2, 4}}); 

Построим заданный граф. 

>DrawGraph(G); 
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Теперь удалим четвертую вершину. 
>G := DeleteVertex(G, [4]); – присваивание осуществляется для сохранения 

нового графа с удаленными вершинами. Можно осуществлять данную процеду-
ру без присваивания DeleteVertex(G, [4]), тогда программа сделает копию данно-
го графа, удалит его вершины, но построить мы его не сможем. 

Построим то, что получилось. 

>DrawGraph(G); 

 
 
Теперь добавим четвертую, пятую, шестую и седьмую вершины 

>G := AddVertex(G, [4, 5, 6, 7]); 

Проверим, сколько теперь вершин содержит граф G: 
 
>Vertices(G); 

[1, 2, 3, 4, 5, 6, 7] 
 

Внизу функции видны цифры 1, 2, 3, 4, 5, 6, 7. Это означает, что добавлен-
ные вершины принадлежат графу. 

Далее построим граф с добавленными вершинами. Для наглядности постро-
им граф, вершины которого стоят по кругу. 

>DrawGraph(G, style=circle); 

 

Добавим новые ребра 1–7, 5–6, 2–5, 3–5, 4–7: 

>AddEdge(G, {{1, 7}, {2, 5}, {3, 5}, {4, 7}, {5, 6}}); 

Проверим количество вершин и ребер графа: 
 

>G; 
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Graph 3: an undirected unweighted graph with 7 vertices and 8 edge(s) 
 

Видно, что граф теперь состоит из семи вершин и восьми ребер. 
Построим полученный граф. 
 

>DrawGraph(G, style=circle); 

 

Теперь посмотрим, сколько вершин в графе и какие они имеют номера. 
 

>Vertices(G); 

 

Внизу функции через запятую перечислены вершины. 
Таким образом создаются и удаляются вершины и ребра в графе. Если 

необходимо переопределить граф, то следует сначала удалить ненужные верши-
ны и ребра, а затем добавить новые, т. к. программа сохраняет все внесенные ра-
нее изменения. Даже если Вы допустили ошибку в добавлении или удалении 
вершин/ребер и уже создали новый измененный граф, то после удаления ненуж-
ного (ошибочного) кода программы тот граф все равно сохранится и в дальней-
шем могут возникать ошибки после его исправления. 

Рассмотрим действия с весами ребер. 
Создадим новый граф Р: 

>P :=Graph({{1, 2}, {1, 3}, {2, 3}}); 

Данный граф еще не взвешенный. Создадим матрицу весов, которые следу-
ет добавить на ребра графа:  

>M := Matrix([[0, 2, 3], [2, 0, 1], [3, 1, 0]]); 

Внизу функции появилась матрица: 
 

















013

102

320

 

 

Создадим взвешенный граф H1, состоящий из вершин и ребер исходного 
графа P, но с указанием весов ребер, указанных в матрице M.  

>H1 := MakeWeighted(P, M); 

{ }, , , , , ,1 2 3 4 5 6 7
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После ввода функции видно, что граф стал взвешенным: 
 

Graph 6: an undirected weighted graph with 3 vertices and 3 edge(s) 
 

>DrawGraph(H1); 

 
Теперь объединим два графа в один. Для этого создадим графы G1 и G2. 

>G1 := Graph({{1, 2}, {2, 3}, {2, 4}, {1, 3}}); 
 

Graph 7: an undirected unweighted graph with 4 vertices and 4 edge(s) 
 

>G2 := Graph({{2, 5}, {2, 4}, {1, 3}, {4, 5}}); 
 

Graph 8: an undirected unweighted graph with 5 vertices and 4 edge(s) 

Нарисуем эти графы. 

>DrawGraph(G1); 

 
>DrawGraph(G2); 

 
 
Объединим эти графы в граф Н и нарисуем полученный граф. 
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>H:=GraphUnion(G1,G2); 
 

Graph 9: an undirected unweighted graph with 5 vertices and 6 edge(s) 
 
>DrawGraph(H); 

 
 

Найдем максимальный поток в графе, используя функцию MaxFlow(N, ‘s’, ‘t’), 
где N – граф, s – начало графа, t – конец. 

Создадим ориентированный граф, для начала определим матрицу весов ребер: 
 
>A := Matrix([[0, 1, 0, 4, 0, 0], [0, 0, 1, 0, 3, 0], [0, 1, 0, 0, 0, 1], [0, 0, 3, 0, 1, 0], 

[0, 0, 0, 1, 0, 4], [0, 0, 0, 0, 0, 0]]); 
 

 
 

Создаем орграф N с помощью функции Digraph(A, weighted), с помощью 
функции IsNetwork(N) проверяем начальную и конечную вершину: 

 

>N:=Digraph(A, weighted); 
 

Graph 14: a directed weighted graph with 6 vertices and 10 edge(s) 
 

>Isnetwork(N); 

 
 

Построим граф N: 
 

>DrawGraph(N); 
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Найдем максимальный поток орграфа: 
 
>MaxFlow(N, 1, 6); 

 

 
Создадим взвешенный граф С: 
 
>C := Graph({[{1, 2}, 1], [{1, 6}, 3], [{2, 3}, 3], [{3, 4}, 7], [{4, 5}, 3],  

[{5, 6}, 3]}); 
 
С помощью функции DijkstrasAlgorithm(C, 1, 4) найдем кратчайший путь  

от первой до четвертой вершины: 
 
>DijkstrasAlgorithm(C, 1, 4); 
 

 
>DrawGraph(C); 
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Если надо проверить путь от определенной вершины до каждой, то в скоб-
ках, помимо исходного графа, указываем номер вершины, от которой ищут крат-
чайший путь. 

 
>DijkstrasAlgorithm(C, 1); 
 
[[[1],0], [[1,2],1] [[1,2,3],4], [[1,6,5,4],9], [[1,6,5],6], [[1,6],3]; 
 

Контрольные вопросы и задания  

На заданной сети указаны пропускные способности ребер (рисунок 7). 
Предполагается, что пропускные способности в обоих направлениях  
одинаковы. Требуется: сформировать на сети поток максимальной мощности, 
направленный из истока I в сток S; выписать ребра, образующие на сети разрез 
минимальной пропускной способности; проверить решение в системе Maple 14. 
 
 
1 

 

4 

 

7 

 

2 

 

5 

 

8 

 
3 

 
 

6 

 

9 

 

 
Рисунок 7 – Варианты контрольных заданий
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5 Лабораторная работа № 5. Исследование полноты системы 
булевых функций 

Цель работы: изучить методику исследования полноты системы булевых 
функций по теореме Поста. 

Порядок выполнения работы 

1 Изучить основные теоретические положения, сделав необходимые выпис-
ки в конспект. 

2 Получить задание у преподавателя, выполнить типовые задания. 
3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 
2 Постановка задачи. 
3 Результаты исследования. 
4 Выводы. 

Основные теоретические положения 

Как известно, алгеброй называют систему, включающую в себя некоторое 
непустое множество объектов с заданными на нем функциями (операциями),  
результатами применения которых к объектам данного множества являются объ-
екты того же множества. 

Булевой алгеброй или алгеброй логики называется двухэлементное множе-
ство B = {0, 1} вместе с операциями конъюнкции, дизъюнкции и отрицания. 

Система булевых функций {f1,  f2, …, fn} называется полной, если любая бу-
лева функция может быть выражена в виде суперпозиции этих функций. Все ло-
гические операции могут быть выражены через операции конъюнкции, дизъ-
юнкции и отрицания. Поэтому система функций {, &, } является полной. 
Также полными являются следующие системы функций:  

а){,  };  
б) {, &};  
в) {,  }. 
Полнота систем {,  } и {, &} следует из полноты системы {, &, },  

а также законов де Моргана и двойного отрицания, следствием которых  
является возможность выразить конъюнкцию через дизъюнкцию и наоборот:  
A&B(A  B); A  B (A & B). Поэтому система {, &, } может быть 
сокращена на одну функцию. 

Полнота системы {,   } следует из полноты системы {,  } и равно-
сильности, позволяющей выразить импликацию через отрицание и дизъюнкцию: 
A   B  A  B. 

Пусть дан класс функций B (то есть конечное или бесконечное множество 
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функций), объединенных по общему признаку. Замыканием этого класса  
(обозначение – [B]) будем называть множество всех суперпозиций функций из 
класса B. Класс B будем называть замкнутым, если его замыкание совпадает  
с ним самим B = [B]. 

Рассмотрим классы функций, которые являются замкнутыми. 
Класс Т0 – класс функций, сохраняющих константу 0: 
 

f( nx~ )  Т0  f(0, …, 0) = 0. 
 
Класс Т1 – класс функций, сохраняющих константу 1: 
 

f( nx~ )  Т1  f(1, …, 1) = 1. 
 

Класс S – класс самодвойственных функций: 
 

f( nx~ )  S  f( nx~ ) = f*( nx~ ). 
 
Функция ),,( 1 nxxf   называется двойственной к f( nx~ ), обозначается f*( nx~ ), 

т. е. f*( nx~ ) = ),,( 1 nxxf  . 

Класс М – класс монотонных функций: 
 

f( nx~ )  М   ,   nP2 , таких, что     f()  f(). 
 
На множестве наборов значений переменных nP2  введем отношение порядка 

, называемое отношением предшествования (отношением сравнимости), сле-
дующим образом:   , если i  i,  i = n,1 . 

Класс L – класс линейных функций: 
 

f ( nx~ )  L  f( nx~ ) = ,0
1

axa ii

n

i





 
 

представимых полиномом Жегалкина не выше первой степени. 
Теорема Поста. Система функций полна тогда, и только тогда, когда она не 

находится ни в одном из пяти важнейших замкнутых классов, а именно S, M, L, 
T0, T1. 

Пример 1 – Исследовать полноту системы А = { f1 = x  y, f2 = xy  z,  
f3 = x  y  z  1,  f4 = xy  yz  zx}. 

 
Решение 
 
Исследование на принадлежность функций классам T0, T1, L, S, M: 
1) f1, f2, f4  Т0, т. к. f1(0, 0) = 0  0 = 0, f2(0, 0) = 0  0  0 = 0,  

f4(0, 0, 0) = 0  0  0  0  0  0 = 0; f3  Т0, т. к. f3(0, 0, 0) = 0  0  0  1 = 1; 
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2) f1,  f2,  f3Т1, т. к. f1(1,1) = 1  1 = 0,  f2(1,1) = 1  1  1 = 0,  f3(1, 1,1) =  
= 1  1  1  1 = 0; f4 Т1, т. к.  f4(1, 1, 1) = 1  1  1  1  1  1 = 1; 

3) f1,  f3  L, т. к. f1 = x  y, f3 = x  y  z  1 – представимы полиномом Же-
галкина первой степени; f2, f4  L, т. к. f2 = xy  z, f4 = xy  yz  zx – представимы 
полиномом Жегалкина второй степени; 

4) f3,  f4  S, т. к.  f3
*( 3~x ) = ( 1,0,0,1,0,1,1,0 ) = (1, 0, 0, 1, 0, 1, 1, 0) = f3( 3~x ),  

f4
*( 3~x ) = ( 0,0,0,1,0,1,1,1 ) = (0, 0, 0, 1, 0, 1, 1, 1) = f4( 3~x ); 

f1, f2  S, т. к. f1
*( 3~x ) = )0 ,0 ,1 ,1 ,1 ,1 ,0 ,0(  = (1, 1, 0, 0, 0, 0, 1, 1)  f1( 3~x ), 

f2
*( 3~x ) = ( 0,1,0,1,0,1,1,0 ) = (1, 0, 0, 1, 0, 1, 0, 1)  f2( 3~x ); 

5) f1, f2, f3  М, т. к. f1: (0, 0, 1, 1) (1, 1, 0, 0), f2: (0, 1, 0, 1) (0, 1, 1, 0),  
f3: (1, 0, 0, 1) (0, 1, 1, 0); f4  М, т. к. f4: (0, 0, 0, 1) ≤ (0, 1, 1, 1); (0, 0) ≤ (0, 1)  
и (0,1) ≤ (1, 1); 0 ≤ 0 и 0 ≤ 1, и 1 ≤ 1. 

Результаты исследования на принадлежность функций каждому из пяти 
классов отображены в критериальной таблице (таблица 2). 

Таблица 2 – Критериальная таблица Поста 

Функция Т0 Т1 L S M 

f1 + – + – – 

f2 + – – – – 

f3 – – + + – 

f4 + + – + + 

 
Вывод: система функций А является полной, т. к. в каждом из столбцов кри-

териальной таблицы Поста есть хотя бы один «–». 

Контрольные вопросы и задания  

Доказать, является ли система булевых функций полной при: 
а) };0,{  
б) };1,,{   
в) };1,{  
г) {|}, где )(| yxyx   – штрих Шеффера; 

д) }{ , где )( yxyx   – стрелка Пирса; 
е) };,{   
ж) };0,,{   
з) };,{ xyzxzxy   
и) };1,{  
к) };0,,{   
л) };)(,{ zyxxy   
м) },{  , где )( yxyx  ; 
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н) },{  ; 
о) },{  ; 
п) },{  . 
 

6 Лабораторная работа № 6. Минимизация функций булевой 
алгебры 

Цель работы: изучить методы минимизации функций булевой алгебры. 

Порядок выполнения работы 

1 Изучить основные теоретические положения, сделав необходимые выпис-
ки в конспект. 

2 Получить задание у преподавателя, выполнить типовые задания. 
3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 
2 Постановка задачи. 
3 Результаты исследования. 
4 Выводы. 

Основные теоретические положения 

Задача минимизации булевых функций. 
Задачу поиска наиболее простой записи булевой функции называют задачей 

минимизации. Решение такой задачи основывается на понятии несущественно-
сти переменных. Переменная называется несущественной на паре наборов, если 
при изменении ее значения на противоположное булева функция сохраняет свое 
значение. Две конъюнкции, содержащие несущественную переменную, заменя-
ются одной, в которой несущественная переменная отсутствует. 

Дизъюнктивная нормальная форма (ДНФ) булевой функции f(x1, …, xn) 
называется кратчайшей, если она содержит наименьшее число элементарных 
конъюнкций по сравнению с другими ДНФ этой же функции. 

Дизъюнктивная нормальная форма (ДНФ) булевой функции f(x1, …, xn) 
называется минимальной, если она имеет наименьшее число аргументов среди 
всех эквивалентных ей ДНФ. 

Импликантой функции f(x1, …, xn) называется такая элементарная конъюнк-
ция К над множеством переменных {x1, …, xn}, что К  f(x1, …, xn) =  
= f(x1, …, xn). Импликанта называется простой, если при отбрасывании любого 
аргумента из К получается элементарная конъюнкция, не являющаяся импликан-
той функции f. Дизъюнкция всех простых импликант функции f называется со-
кращенной ДНФ функции f. 
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ДНФ булевой функции f(x1, …, xn) называется тупиковой, если отбрасывание 
любого слагаемого или аргумента приводит к неэквивалентной ДНФ. 

Тупиковая ДНФ функции f(x1, …, xn) получается из сокращенной ДНФ этой 
функции путем отбрасывания некоторых элементарных конъюнкций.  
Среди тупиковых ДНФ находят минимальную и кратчайшую ДНФ функции. 

Метод неопределенных коэффициентов. 
Данный метод может быть применен для минимизации функций алгебры 

логики от любого числа аргументов, однако для простоты изложения и большей 
наглядности его рассмотрение будем производить на примере минимизации 
функции трех аргументов. 

Представим функцию f(x1, x2, x3) в виде следующей ДНФ: 
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Здесь представлены все возможные конъюнктивные члены, которые могут 
входить в дизъюнктивную форму представления f(x1, x2, x3). Коэффициенты k  
с различными индексами являются неопределенными и подбираются так, чтобы 
получающаяся после этого дизъюнктивная форма была минимальной. Если  
теперь задавать все возможные наборы аргументов (x1, x2, x3) и приравнивать по-
лученное после этого выражение (отбрасывая нулевые конъюнкции) значению 
функции на выбранных наборах, то получим систему из 23 уравнений для опре-
деления коэффициентов k: 
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Пусть таблично задана некоторая функция f(x1, x2, x3). Задание некоторой 

конкретной функции определяет значения правых частей системы (2):  
f(x1, x2, x3) = 0  1. Если функция f(x1, x2, x3) на соответствующем наборе пере-
менных равна нулю, то все коэффициенты, входящие в уравнение, будут равны 
нулю. Это вытекает из того, что дизъюнкция равна нулю только тогда, когда все 
члены, входящие в нее, равны нулю. 

Рассмотрев все наборы, на которых данная функция обращается в нуль, по-
лучим все нулевые коэффициенты k. В уравнениях, в которых справа стоят еди-
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ницы, вычеркнем все нулевые коэффициенты. Из оставшихся коэффициентов 
приравняем единице коэффициент, определяющий конъюнкцию наименьшего 
возможного ранга, а остальные коэффициенты в левой части данного уравнения 
примем равными нулю (это можно сделать, т. к. дизъюнкция обращается в еди-
ницу, если хотя бы один член ее равен единице). Единичные коэффициенты k 
определят из (1) соответствующую ДНФ. 

Пример 1 – 321321321321321321 ),,( xxxxxxxxxxxxxxxxxxf  . 
Составим систему (2): 
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Из второго, третьего и четвертого уравнений в силу свойств дизъюнкции 

вытекает, что 
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Таким образом, данная система имеет вид 
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Таким образом, получаем систему 
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Отсюда находим минимальную ДНФ для данной функции: 

.),,( 321321 xxxxxxf   
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Описанный метод эффективен лишь для минимизации функций, число  
аргументов в которых не больше пяти-шести. Это связано с тем, что число урав-
нений равно n2 . 

Правила минимизации с использованием диаграмм Вейча (карт Карно). 
В диаграммах Вейча (картах Карно) таблица истинности булевой функции 

представляется в виде координатной карты состояний, которая содержит 2n 
клеток (по числу входных наборов булевой функции n переменных). Перемен-
ные функции разбиваются на две группы так, что одна группа определяет 
координаты столбца карты, а другая – координаты строки. 

При такoм способе построения каждая клетка определяется значениями 
переменных, соответствующих определенному двоичному набору. Внутри каж-
дой клетки карты Карно ставится значение функции на данном наборе. Пере-
менные в строках и столбцах располагаются так, чтобы соседние клетки карты 
Карно различались только в одном разряде переменных, т. е. были соседними. 
Поэтому значения переменных в столбцах и в строках карты образуют соседний 
код Грея. Такой способ представления очень удобен для наглядности при мини-
мизации булевых функций. 

При минимизации булевых функций с помощью диаграмм Вейча  
(карт Карно) используют следующие правила. 

1 В карте Карно группы единиц (для получения ДНФ) и группы нулей  
(для получения конъюнктивной нормальной формы (КНФ)) необходимо обвести 
четырехугольными контурами. Внутри контура должны находиться только  
одноименные значения функции. Этот процесс соответствует операции склеива-
ния или нахождения импликант данной функции. 

2 Количество клеток внутри контура должно быть целой степенью двойки 
(1, 2, 4, 8, 16...). 

3 При проведении контуров крайние строки карты (верхние и нижние, ле-
вые и правые), а также угловые клетки считаются соседними (для карт до четы-
рех переменных). 

4 Каждый контур должен включать максимально возможное количество 
клеток. В этом случае он будет соответствовать простой импликанте. 

5 Все единицы (нули) в карте (даже одиночные) должны быть охвачены 
контурами. Любая единица (нуль) может входить в контуры произвольное коли-
чество раз. 

6 Множество контуров, покрывающих все 1 (0) функции, образуют тупико-
вую ДНФ (КНФ). Целью минимизации является нахождение минимальной из 
множества тупиковых форм. 

7 В элементарной конъюнкции (дизъюнкции), которая соответствует одно-
му контуру, остаются только те переменные, значение которых не изменяется 
внутри обведенного контура. Переменные булевой функции входят в элементар-
ную конъюнкцию (для значений функции 1) без инверсии, если их значение на 
соответствующих координатах равно 1, и с инверсией – если 0. Для значений бу-
левой функции, равных 0, записываются элементарные дизъюнкции, куда пере-
менные входят без инверсии, если их значение на соответствующих координатах 
равно 0, и с инверсией – если 1. 
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Пример 2 – Пусть функция f(x, y, z) = 1 на наборах 0, 1, 2, 3, 6, 7, 8, 15. Диа-
грамма Вейча для заданной функции представлена на рисунке 8. 

 

 
 
Рисунок 8 – Минимальная ДНФ на диаграмме Вейча 
 
Единицы функции, стоящие в соседних клетках, отличаются значением только 

одной переменной, следовательно, они склеиваются по этой переменной и образу-
ют импликанту. В этом случае говорят, что импликанта покрывает соответствую-
щие единицы булевой функции. Например, две единицы на наборах 7 и 15 покры-
ваются импликантой yzt. Четыре единицы на наборах 2, 3, 7, 6 – импликантой zx . 
При этом соседними считаются также клетки, стоящие вдоль левого и правого края 
диаграммы (отличаются значением у) и вдоль верхнего и нижнего края (отличают-
ся значением x). 

При минимизации булевой функции на диаграмме Вейча сначала находят 
покрытия, содержащие максимальное число единиц (8, 4, 2), а затем покрытия, 
накрывающие оставшиеся единицы таким образом, чтобы они также были мак-
симальны по величине и при удалении этого покрытия хотя бы одна единица 
функции осталась непокрытой. При этом некоторые единицы могут быть  
покрыты неоднократно. 

Для функции, представленной на рисунке 8, минимальная ДНФ 
 

tzytzyzxyxzyxf       ),,( . 
 

Минимальная КНФ строится двойственно по диаграмме Вейча, заполненной 
нулями в пустых клетках. Для данной функции минимальная КНФ 
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))()((),,( tyxtzxzyzyxf  . 
 

Минимизация частично определенных булевых функций. 
Диаграммы Вейча могут использоваться для минимизации не только так 

называемых полностью определенных логических функций (когда функция  
в таблице истинности принимает только два значения – 0 или 1), но и для случая 
частичных (не полностью определенных) функций. При построении реальных 
цифровых устройств контроля и управления комбинационные схемы описыва-
ются, как правило, не полностью определенными булевыми функциями.  
В таблице истинности и, следовательно, в диаграммах Вейча такие функции, 
кроме 0 и 1, будут содержать и «–»; это означает, что такой набор никогда на 
вход устройства не поступает. Следовательно, на месте «–» может быть произ-
вольно поставлена 1 либо 0. Этот процесс называется доопределением булевой 
функции. Доопределение булевой функции желательно выполнять так, чтобы 
получить возможно более простое выражение. В этом случае реализованная 
комбинационная схема также оказывается более простой. 

Контрольные вопросы и задания  

Найти минимальные ДНФ и КНФ булевых функций: 
а) 15,13,11,10,9,8,6,4,3,0|1),,,( tzyxf ; 
б) 14,13,10,9,7,6,4,2,1|1),,,( tzyxf ; 
в) 15,14,12,10,8,7,5,3,1|1),,,( tzyxf ; 
г) 15,14,12,11,10,9,8,7,5|1),,,( tzyxf ; 
д) 15,13,11,10,9,8,6,4,3,0|1),,,( tzyxf ; 
е) 15,14,12,10,9,6,5,3,2,1,0|1),,,( tzyxf ; 
ж) 15,14,12,11,9,8,7,5,3,0|1),,,( tzyxf ; 
з) 15,14,13,10,9,8,7,6,3,1|1),,,( tzyxf ; 
и) 15,13,12,11,10,9,8,7,5,4,2|1),,,( tzyxf ; 
к) 14,12,10,9,7,5,4,1|1),,,( tzyxf ; 
л) 15,14,12,10,7,6,4,2|1),,,( tzyxf ; 
м) 15,13,11,9,6,4,2|1),,,( tzyxf ; 
н) 14,12,11,10,9,8,7,5,3,0|1),,,( tzyxf ; 
о) 11,10,9,8,3,2,1,0|1),,,( tzyxf ; 
п) 15,10,9,8,7,6,3,1|1),,,( tzyxf ; 
р) 15,12,11,9,8,5,4,1,0|1),,,( tzyxf ; 
с) 15,14,11,10,3,2|1),,,( tzyxf ; 
т) 13,9,8,7,6,3,2,1,0|1),,,( tzyxf ; 
у) 15,11,9,8,5,4,3,2|1),,,( tzyxf ; 
ф) 14,12,11,10,9,7,6,5,3,1|1),,,( tzyxf ; 
х) 13,12,9,8,7,3,0|1),,,( tzyxf ; 
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ц) 14,12,10,8,6,4,2,0|1),,,( tzyxf ; 
ч) 12,11,9,5,4,3,1|1),,,( tzyxf ; 
ш) 15,14,11,7,6,5,4,3|1),,,( tzyxf ; 
щ) 14,12,10,9,8,6,4|1),,,( tzyxf . 
 

7 Лабораторная работа № 7. Синтез логических схем 

Цель работы: изучить методы анализа и синтеза логических схем. 

Порядок выполнения работы 

1 Изучить основные теоретические положения. 
2 Получить задание у преподавателя, выполнить типовые задания. 
3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 
2 Постановка задачи. 
3 Результаты исследования. 
4 Выводы. 

Основные теоретические положения 

Задача синтеза логической схемы. 
По заданной функции f требуется построить схему, реализующую данную 

функцию. Задача синтеза решается неоднозначно. Можно поставить в соответ-
ствие заданной функции f целое множество схем. Для построения логической 
схемы необходимо элементы, предназначенные для выполнения логических опе-
раций, указанных в логической функции, располагать в порядке, указанном в бу-
левом выражении. 

Пример 1 – Построить логическую схему устройства, реализующего логи-
ческую функцию 321321321321 xxxxxxxxxxxxf   (рисунок 9). 

Синтез логических устройств в заданном базисе. 
С целью уменьшения номенклатуры используемых микросхем часто ис-

пользуют функционально полную систему в составе двух логических элементов, 
выполняющих операции И-НЕ, ИЛИ-НЕ. Любую логическую функцию можно 
записать в заданном базисе логических элементов. Если задан базис  
И-НЕ, то путем двойного инвертирования исходного выражения или его части  
и применения теорем де Моргана логическая функция приводится к виду, со-
держащему только операции логического умножения и инвертирования. Если же 
задан базис ИЛИ-НЕ, исходную логическую функцию теми же приемами приво-
дят к виду, содержащему только операции логического сложения и инверсии. 
Далее логическое выражение записывается через условные обозначения выбран-
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ных операций. 
 

 
 

Рисунок 9 – Пример логической схемы устройства 
 
Пример 2 – Заданную функцию f перевести в базисы И-НЕ и ИЛИ-НЕ.  

Исходная ДНФ в базисе И-НЕ имеет вид 
 

 3214314232143142 xxxxxxxxxxxxxxxxf  
 

)||(|)||(|)|())()(( 3214314232143142 xxxxxxxxxxxxxxxx  . 
 

Аналогично КНФ в базисе ИЛИ-НЕ имеет вид 
 

1 4 1 2 3 2 3 4 1 4 1 2 3 2 3 4( )( )( ) ( ) ( ) ( )f x x x x x x x x x x x x x x x x                
 

)()()( 43232141 xxxxxxxx  . 

Пример 3 – Пусть логическая функция задана выражением 
 

)()( 3243141 xxxxxxxf  . 
 

Привести логическую функцию в базис И-НЕ, ИЛИ-НЕ. 
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Решение 
 

1 Приводим функцию к базису И-НЕ: 
 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 2 31( | ) ( | ) ( | ) | ( | );f f f f f f f f f f f f f f f f f f f            

 

41411 | xxxxf  ; 
 

4314314314312 || xxxxxxxxxxxxf  ; 
 

323232323 | xxxxxxxxf  ; 
 

))|(|)||((|)|( 3243141 xxxxxxxf  . 
 

2 Приводим функцию к базису ИЛИ-НЕ: 
 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3( ) ( ) ( )f f f f f f f f f f f f f f f f             ; 
 

414141411 xxxxxxxxf  ; 
 

4314314312 xxxxxxxxxf  ; 
 

3233232323 x xfxxxxxxf  ; 
 

.))()(()( 3243141 xxxxxxxf   
 

Задача анализа логической схемы. 
По заданной схеме требуется определить функцию f, реализуемую дан- 

ной схемой. 
При решении задачи анализа, как правило, придерживаются следующей  

последовательности действий: 
1) заданная схема разбивается по ярусам; 
2) начиная с последнего выходы каждого элемента обозначаются проиндек-

сированными функциями в зависимости от яруса, к которому отно- 
сится элемент; 

3) записываются выходные функции каждого элемента в виде формул в со-
ответствии с введенными обозначениями; 

4) производится подстановка одних выходных функций через другие с по-
мощью входных переменных; 
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5) записывается получившаяся булева функция через входные  
переменные. 

Пример 4 – По заданной логической схеме (рисунок 10) составить  
булеву функцию. 

 

 
 

Рисунок 10 – Пример логической схемы устройства 
 

Согласно приведенной выше последовательности действий произведем раз-
биение схемы на ярусы. Пронумеровав получившиеся ярусы, введем обозначе-
ния для каждой выходной функции (см. рисунок 10). Запишем все функции 
начиная с первого яруса: 

1) 422211 xfff  ; 
2) 23121 xff  ; 13222 xff  ; 

3) 131 xf  ; 3232 xxf  . 

Теперь запишем все функции, подставляя входные переменные 41 ...,, xx : 
 

2121 xxf  ; 

)( 32122 xxxf  . 
 

В итоге получим выходную функцию 

4322111 )()( xxxxxxff  . 

Контрольные вопросы и задания  

1 Синтезировать в базисе И-НЕ (ИЛИ-НЕ) сумматор для выполнения опера-
ции сложения четырехразрядных чисел в двоичном коде. Сложение двух двоич-
ных чисел производится в соответствии с таблицей истинности (таблица 3), где 
Ai и Bi – значения складываемых двоичных чисел в данном разряде; Si – резуль-
тат суммирования в данном разряде; Pi и Pi–1 – значения сигналов переноса в 
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данном и предыдущем разряде соответственно. 
 

Таблица 3 – Выполнение операции сложения двоичных чисел 
 

Вход Выход 

Ai Bi Pi–1 Pi Si 

0 0 0 0 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 1 
 

2 Синтезировать в базисе И-НЕ (ИЛИ-НЕ) преобразователь двухразрядного 
двоичного кода в трехразрядный (таблица 4). 
 

Таблица 4 – Преобразование двухразрядного кода в трехразрядный 
 

Вход Выход 

a1 a0 b2 b1 b0 

0 0 0 0 0 

0 1 1 0 1 

1 0 0 0 1 

1 1 1 1 0 
 

3 Реализовать функции И, ИЛИ и НЕ на логических элементах в базисе  
И-НЕ (ИЛИ-НЕ). 

4 Синтезировать в базисе И-НЕ (ИЛИ-НЕ) устройства, заданные логической 
функцией: 

а) ))((),,( 43214313214321 xxxxxxxxxxxx,xxf  ; 

б) 43214321 )(),,( xxxxxx,xxf  ; 

в) 43214321 )(),,( xxxxxx,xxf  ; 
г) 43214321 ),,( xxxxxx,xxf  ; 
д) 43214321 ),,( xxxxxx,xxf  ; 

е) 2143214321 ),,( xxxxxxxx,xxf  ; 
ж) ))((),,( 43214321 xxxxxx,xxf  ; 

з) ))((),,( 43214213214321 xxxxxxxxxxxx,xxf  ; 

и) 43213214321 ),,( xxxxxxxxx,xxf  ; 

к) 43213214321 )(),,( xxxxxxxxx,xxf  ; 
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л) ))((),,( 43213214321 xxxxxxxxx,xxf  ; 

м) 43214321 ),,( xxxxxx,xxf  ; 

н) 31432143214321 ),,( xxxxxxxxxxxx,xxf  ; 

о) )((),,( 413214321 xxxxxxx,xxf  ; 

п) 433214321 )(),,( xxxxxxx,xxf  ; 

р) 42214314321 ),,( xxxxxxxxx,xxf  ; 

с) 43143214321 ),,,( xxxxxxxxxxxf  ; 

т) 213243214321 ),,,( xxxxxxxxxxxxf  ; 

у) 421434321 ),,,( xxxxxxxxxf  ; 

ф) 4213214321 ),,,( xxxxxxxxxxf  . 

8 Лабораторная работа № 8. Способы задания абстрактного  
конечного автомата 

Цель работы: изучить способы задания конечного автомата. 

Порядок выполнения работы 

1 Изучить основные теоретические положения, сделав необходимые выпис-
ки в конспект. 

2 Получить задание у преподавателя, выполнить типовые задания. 
3 Сделать выводы по результатам исследований. 
4 Оформить отчет. 

Требования к отчету 

1 Цель работы. 

2 Постановка задачи. 
3 Результаты исследования. 
4 Выводы. 

Основные теоретические положения 

Понятие конечного автомата. 
Конечный автомат является математической моделью реальных дискретных 

устройств по переработке информации. 
Конечным автоматом называется структура  ;;;; YQXA , где X, Q, Y – 

произвольные непустые конечные множества. 
Множество }...,,{ 1 maaX   называется входным алфавитом, а его элементы 

входными символами, их последовательности – входными словами. Множество 
}...,,{ 1 nqqQ   называется множеством состояний, а его элементы – состояниями. 
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Множество }...,,{ 1 pbbY   называется выходным алфавитом, а его элементы – 

выходными символами, их последовательности – выходными словами. 
Функция δ : X Q Q   называется функцией переходов. Функ- 

ция λ : X Q Y   называется функцией выходов, т. е. δ( , )a q Q , λ( , )a q Y | 
.; QqXa   

Если в момент времени t = 1, 2,... на вход автомата А = (X; Q;Y; δ; λ) после-
довательно подаются входные символы Xtx )(  и при этом автомат находится  
в состоянии Qtq )( , то под воздействием символа x(t) автомат перейдет в новое 
состояние Qtq  )1(  и выдаст выходной сигнал y(t). 

Величины x(t), y(t), q(t), q(t + 1) связаны между собой следующи- 
ми уравнениями: 

 

( 1) δ( ( ), ( ));
1, 2, ..., , ... .

( ) λ( ( ), ( )),

q t x t q t
t n

y t x t q t

 
 

 

 
Эти уравнения называются каноническими уравнениями автомата А. 
С конечным автоматом ассоциируется воображаемое устройство, которое ра-

ботает следующим образом. Оно может находиться в состоянии из множества Q, 
воспринимать символы из множества X и выдавать символы из множества Y. 

Способы задания конечного автомата. 
Существует несколько эквивалентных способов задания абстрактных авто-

матов, среди которых можно назвать табличный, графический, матричный и 
функциональный. 

Табличное задание автомата. Из определения автомата следует, что его 
всегда можно задать таблицей с двумя входами, содержащей m строк и n столб-
цов, где на пересечении столбца q и строки a стоят значения функций ),( qa   
и ),( qa  (таблица 5). 

 
Таблица 5 – Табличное задание автомата 

 

a 
q 

q1 … qj … qn 

a1 ),( 11 qa ; ),( 11 qa  … ),( 1 jqa ; ),( 1 jqa  … ),( 1 nqa ; ),( 1 nqa  

… … … … … … 

ai ),( 1qai ; ),( 1qai  … ),( ji qa ; ),( ji qa  … ),( ni qa ; ),( ni qa  

… … … … … … 

am ),( 1qam ; ),( 1qam  … ),( jm qa ; ),( jm qa  … ),( nm qa ; ),( nm qa  

 
Задание автомата диаграммой Мура. Другой способ задания конечного 

автомата – графический. При этом способе состояния автомата изображают 
кружками, в которые вписывают символы состояний qj (j = 1, ..., n). Из каждого 
кружка проводится т стрелок (ориентированных ребер), взаимнооднозначно со-
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ответствующих символам входного алфавита }...,,{ 1 maaX  . Стрелке, соответ-
ствующей символу Xai   и выходящей из кружка Qq j  , приписывается пара  

( ),(, jii qaa  ), причем эта стрелка ведет в кружок, соответствующий ),( ji qa . 

Полученный рисунок называется графом автомата, или диаграммой Мура. 
Для не очень сложных автоматов этот способ более нагляден, чем табличный. 

Матричный способ задания автомата. Кроме рассмотренных выше спо-
собов, произвольный абстрактный автомат может быть описан матрицей соеди-
нений. Такое описание – один из способов матричного задания абстрактных ав-
томатов. Матрица соединений автомата является квадратной и содержит столько 
столбцов (строк), сколько различных состояний имеет рассматриваемый авто-
мат. Каждый столбец (строка) матрицы соединений помечается символом состо-
яния автомата. Если автомат инициальный, то первый слева столбец и первая 
сверху строка матрицы помечаются символом начального состояния автомата.  
В клетке матрицы соединений, находящейся на пересечении столбца j и строки i, 
ставится входной символ a (или дизъюнкция входных символов), под воздей-
ствием которого осуществляется переход из состояния i в состояние j. Рядом с 
входным символом в скобках ставится выходной символ, который выдает авто-
мат, выполняя переход из i-го состояния в j-е.  

Контрольные вопросы и задания  

Задание 1 
Для автомата, заданного таблицей, построить диаграмму Мура. Задать этот 

автомат системой булевых функций (рисунок 11).  
 

1 x 
q 

4 x 
q 

0 1 2 3 0 1 2 3
 0 (1; 1) (3; 0) (2; 0) (2; 0) 0 (1; 0) (3; 1) (2; 0) (1; 0)
 1 (2; 1) (2; 0) (3; 0) (3; 0) 1 (3; 0) (1; 1) (0; 1) (3; 1)

 

2 x 
q 

5 x 
q 

0 1 2 3 0 1 2 3
 0 (0; 0) (1; 1) (3; 1) (2; 0) 0 (2; 0) (0; 0) (3; 1) (1; 0)
 1 (2; 0) (0; 1) (3; 1) (1; 0) 1 (1; 0) (0; 0) (0; 0) (3; 0)

 

3 x 
q 

6 x 
q 

0 1 2 3 0 1 2 3
 0 (3; 0) (2; 0) (1; 1) (0; 1) 0 (2; 1) (2; 1) (2; 1) (2; 1)
 1 (0; 1) (1; 1) (2; 0) (3; 0) 1 (1; 1) (3; 1) (0; 0) (1; 0)
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7 x 
q 

14 x 
q 

0 1 2 3 0 1 2 3
 0 (1; 0) (2; 0) (2; 1) (3; 0) 0 (0; 1) (1; 1) (2; 1) (3; 1)
 1 (3; 0) (3; 1) (2; 1) (1; 0) 1 (0; 0) (0; 1) (3; 1) (2; 1)

 

8 x 
q 

15 x 
q 

0 1 2 3 0 1 2 3
 0 (0; 0) (1; 1) (2; 0) (3; 1) 0 (0; 0) (0; 1) (2; 0) (2; 1)
 1 (1; 0) (0; 1) (3; 0) (2; 1) 1 (1; 0) (1; 1) (3; 0) (3; 1)

 

9 x 
q 

16 x 
q 

0 1 2 3 0 1 2 3
 0 (1; 1) (0; 0) (3; 1) (2; 0) 0 (0; 1) (0; 0) (1; 0) (1; 0)
 1 (0; 1) (2; 0) (2; 1) (3; 0) 1 (2; 0) (2; 1) (3; 0) (3; 1)

 

10 x 
q 

17 x 
q 

0 1 2 3 0 1 2 3
 0 (0; 0) (1; 1) (2; 1) (3; 1) 0 (1; 0) (3; 1) (2; 1) (2; 1)
 1 (3; 1) (0; 1) (1; 1) (2; 0) 1 (2; 1) (2; 0) (3; 0) (3; 0)

 

11 x 
q 

18 x 
q 

0 1 0 1
 0 (0; 0) (0; 1) 0 (0; 0) (1; 1)
 1 (0; 1) (1; 0) 1 (1; 1) (1; 1)
 2 (0; 1) (1; 0) 2 (1; 1) (1; 1)
 3 (1; 0) (1; 1) 3 (0; 0) (1; 1)

 

12 x 
q 

19 x 
q 

0 1 0 1
 0 (0; 0) (1; 1) 0 (0; 0) (1; 1)
 1 (1; 0) (1; 1) 1 (0; 0) (0; 1)
 2 (0; 1) (0; 0) 2 (1; 1) (1; 1)
 3 (–; 1) (–; 0) 3 (1; 1) (0; 1)

 

13 x 
q 

20 x 
q 

1 2 3 1 2 3
 0 (2; 0) (2; 1) (3; 1) 0 (1; 0) (2; 1) (0; 2)
 1 (1; 1) (3; 0) (3; 1) 1 (2; 1) (2; 1) (3; 0)
 2 (1; 1) (2; 1) (1; 0) 2 (3; 2) (0; 1) (2; 0)

 
Окончание рисунка 11 
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Задание 2 
Для автомата, заданного диаграммой Мура, выписать соответствующую 

таблицу и систему булевых функций (рисунок 12). 
 

1 5 

2 6 

3 

 
 

7 

4 8 

 
Рисунок 12 – Варианты контрольных заданий
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9 12 

10 

 

13 

11 14 

 
Окончание рисунка 12 
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