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В учебниках по аналитической геометрии [1] редко приводятся доказа-
тельства оптических свойств эллипса, гиперболы, параболы, что связано с не-
которой их изощренностью. Однако можно свести их к простому вычислению, 
сопровождающемуся важным геометрическим свойством директрис, объеди-
няющим все эти кривые, и тогда заполняется брешь в восприятии данного ма-
териала студентами. Изучить математику по методическим указаниям к реше-
нию типовых расчетов невозможно, математика – наука о вычислениях, часто 
теоретических [2]. 

В вузовских программах по аналитической геометрии изучение векторного 
произведения предшествует теории кривых второго порядка. В работе предла-
гается рассмотреть оптические свойства этих кривых как набор простых задач 
на доказательство с одинаковым алгоритмом решения. Применим для их выво-
да метод векторов [1, 3]. Способ же состоит в вычислении синусов углов, обра-
зованных фокальными радиусами, и вектора касательной к кривой, как отно-
шении модуля векторного произведения соответствующих векторов к произве-
дению их модулей. Причем различные положения точки на кривой дают немно-
го различную картину вывода, что порождает некоторый набор задач для само-
стоятельного решения, приведенный ниже. Разберем три типа таких задач для 
эллипса, гиперболы и параболы.  

Для эллипса обозначим полуоси, фокальное расстояние и эксцентриси- 
тет a, b, c, e. Введем стандартную систему координат, связанную с центром эл-
липса и полуосями. Для точки ( )0 0, ,M x y  лежащей на эллипсе, вычислим сину-
сы углов между векторами касательной и вектором фокального радиуса как от-
ношений модулей векторных произведений к произведению длин. Пусть, для 
простоты, M  лежит в первой четверти, 0 00,  0.x y> >  
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Вычислим 
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где воспользовались каноническим уравнением эллипса и определением экс-
центриситета. 

По свойству директрис фокальный радиус 1F M


 равен произведению экс-

центриситета на расстояние от точки M  до директрисы ( )1MD : 
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Аналогичные вычисления для второго фокуса и второй директрисы дают 
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свойство директрисы 
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Окончательно, синусы двух углов равны, угол падения равен углу отражения. 
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Гипербола. При тех же обозначениях, при том же положении точки, все 
вычисления полностью совпадают, 2

1 2sin sin .l l abα = α =
 

 

Парабола. Для параболы с уравнением 2 2  y px= воспользуемся уравнени-
ем ( )0 0yy p x x= +  ее касательной в точке ( )0 0;M x y , 0, 0.x y> >  Касательный 

вектор имеет координаты ( )0;l y p=


 на плоскости, ( )0; ;0l y p=


 в пространстве. 
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и вектором фокального радиуса FM
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. Вычислим его при помощи векторного 
произведения: 
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что и требовалось доказать. 
 
Задачи  

Доказать оптическое свойство эллипса для точки, лежащей во второй, тре-
тьей и четвертой четвертях (три задания). Проделать то же для гиперболы  
(три задания). Для параболы 2 2  y px=  доказать оптическое свойство для точки 
из четвертой четверти и рассмотреть оставшиеся три канонических уравнения 
для разных положений точки  M  (семь заданий). Провести те же вычисления 
для произвольной точки на каждой из кривых (три задания). Всего 16 задач без 
учета рассмотренных трех. 
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В условиях технологического развития общества немаловажным аспектом 
является качественная математическая подготовка обучающихся технических 
направлений подготовки. Профессиональная компетентность и конкурентоспо-
собность будущих инженеров зависит от умения использовать математический 
инструментарий в своей практической деятельности. Поэтому для инженерных 
направлений подготовки в Башкирском ГАУ математика является обязатель-
ным предметом.  

В рамках курса математики изучаются основные разделы, но особое вни-
мание уделяется линейной и векторной алгебре, аналитической геометрии, 
дифференциальному и интегральному исчислению, дифференциальным урав-
нениям и теории вероятностей. Обучение в курсе математики имеет смешанный 
характер: наряду с традиционными формами (лекции, практические и лабора-
торные занятия) применяются инновационные методы [1, с. 303], в первую оче-
редь – математическое моделирование [2, с. 151]. В процессе изучения отдель-
ных тем обучающимся предлагаются тренировочные прикладные задачи, напо-
минающие собой производственные процессы агропромышленного комплекса. 
С помощью математических инструментов студенты учатся создавать структу-
рированное, упрощенное представление сложного производственного процесса, 
т. е. строить математическую модель. Следующим этапом является разработка 
алгоритма решения. С целью развития цифровых навыков у обучающихся 
(навыки использования программного обеспечения) в качестве инструментария 
предлагается прикладная программа Mathcad. Это означает, что обучающиеся 


