
73

3. Функциональный анализ и интегральные уравнения : учебная программа учреждения
образования по учебной дисциплине для специальности 6-05-0533-09 «Прикладная матема-
тика». Рег. № 2762/б. – URL: https://elib.bsu.by/handle/123456789/334129.

4. Дайняк, В. В. Метрические пространства : метод. указания к практ. занятиям : в 3 ч. /
В. В. Дайняк, Е. С. Чеб. – Мн. : БГУ, 2020. – 52 с. – URL: https://elib.bsu.by/handle/
123456789/241306.

5. Дайняк, В. В. Гильбертовы пространства и аппроксимация : метод. указания к практ.
занятиям : в 3 ч. / В. В. Дайняк, Е. С. Чеб. – Мн. : БГУ, 2020. – Ч. 1. – 52 с. – URL:
https://elib.bsu.by/handle/123456789/256668.

6. Дайняк, В. В. Банаховы пространства : метод. указания к практ. занятиям /
В. В. Дайняк, Е. С. Чеб. – Мн. : БГУ, 2021. – 68 с. – URL: https://elib.bsu.by/handle/
123456789/275205.

УДК 004.42
ПРИМЕНЕНИЕ ВАЙБ-КОДИНГА ПРИ ИЗУЧЕНИИ ТЕОРИИ ГРАФОВ

А. И. ЯКИМОВ, В. А. ПОМОЗОВ

Белорусско-Российский университет
Могилев, Беларусь

С развитием информационных технологий и искусственного интеллекта

появляются новые методы программирования. Вайб-кодинг (от англ. Vibe
coding) – это инновационный подход, при котором пользователь формулирует
задачу на естественном языке, а искусственный интеллект (ИИ) генерирует, оп-
тимизирует и отлаживает соответствующий код [1, 2].

В настоящее время ИИ хорошо генерирует шаблонные ответы и решает
рутинные задачи, не ориентируясь на контекст большой задачи. Вайб-кодинг
хорошо зарекомендовал себя при создании простых программ, решении шаб-
лонных или простых задач. Например, при кодировании несложного алгоритма
или небольшого программного модуля, идеален для прототипирования и экпе-
риментирования.

Рассмотрим применение вайб-кодинга в образовательном процессе при
изучении алгоритмов в теории графов. Пусть требуется написать программу
для алгоритма Дейкстры при нахождении минимального пути от точки A до
точки B. Промпт для ИИ может быть представлен так: «Реализовать алгоритм
Дейкстры на Python с использованием библиотеки networkx и библиотеки для
визуализации графа».

ИИ генерирует следующий код на Python (условно сокращена часть кода
для визуализации графа):

https://elib.bsu.by/handle/123456789/334129
https://elib.bsu.by/
https://elib.bsu.by/handle/%20123456789/275205
https://elib.bsu.by/handle/%20123456789/275205

74

import networkx as nx
import matplotlib.pyplot as plt
import heapq

def dijkstra(graph, start, end):
 """Алгоритм Дейкстры для поиска кратчайшего пути."""
 distances = {node: float('inf') for node in graph}
 distances[start] = 0
 previous = {node: None for node in graph}

queue = [(0, start)]
 while queue:
 current_dist, current = heapq.heappop(queue)
 if current == end:
 break
 if current_dist > distances[current]:
 continue

for neighbor, weight in graph[current].items():
 new_dist = current_dist + weight
 if new_dist < distances[neighbor]:
 distances[neighbor] = new_dist
 previous[neighbor] = current
 heapq.heappush(queue, (new_dist, neighbor))

 # Восстановление пути
 if distances[end] == float('inf'):
 return None, float('inf')
 path = []
 node = end
 while node:
 path.append(node)
 node = previous[node]
 path.reverse()
 return path, distances[end]

Пример использования
if name == "main":
 # Ориентированный граф (вершина: {сосед: вес})
 graph = {
 'A': {'B': 4, 'C': 2},
 'B': {'D': 3, 'E': 1},
 'C': {'B': 1, 'D': 5},
 'D': {'E': 2,'F':1},
 'E': {'F':4,'D':2},
 'F':{}

75

 }
 start = 'A'
 end = 'F'

 # Находим кратчайший путь
 path, distance = dijkstra(graph, start, end)
 if path:
 print(f"Кратчайший путь от {start} до {end}:")
 print(" → ".join(path))
 print(f"Длина пути: {distance}")
 # Визуализируем
 visualize_graph(graph, path)
 else:
 print(f"Путь от {start} до {end} не найден")

При исполнении кода получена визуализация графа на рис. 1.

Рис. 1. Граф с кратчайшим путем A–C–B–D–F

Вайб-кодинг делает изучение алгоритмов теории графов увлекательным:

студенты создают реальные прототипы (например, визуализаторы графов) за
короткое время, усиливая чувство компетентности. Это соответствует теории
самодетерминации, удовлетворяя потребности в автономии и релевантности
через индивидуальные эксперименты. Вайб-кодинг в образовательном процессе
ускоряет освоение алгоритмов, позволяя студентам сосредоточиться на логике

76

и структуре алгоритмов, а не на сложностях синтаксиса. Это делает процесс
обучения более эффективным, открывая перед студентами возможности для
творчества и инновационного мышления.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Sapkota, R. Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of

Agentic AI / R. Sapkota, K. I. Roumeliotis, M. Karkee. – URL: https://doi.org/10.48550/
arXiv.2505.19443 (date of access: 20.12.2025).

2. Horvat, M. What is Vibe coding and when should you use it (or not)? / М. Horvat. – URL:
https://doi.org/10.5281/zenodo.16747092 (date of access: 20.12.2025).

УДК 004.42

ФОРМАЛЬНОЕ ОПИСАНИЕ АЛГОРИТМА ПРИМА В ТЕОРИИ ГРАФОВ

А. И. ЯКИМОВ, К. В. БОГДАШЕВА
Белорусско-Российский университет

Могилев, Беларусь

Алгоритм Прима в теории графов – это жадный алгоритм для нахождения
минимального остовного дерева в неориентированном графе с положительны-
ми весами. Он последовательно выбирает ребра, которые ведут к минимально-
му увеличению стоимости дерева, пока не будет соединена вся компонента
связности [1].

В образовательном процессе рассматривают алгоритмическое описание.
Шаг 1. Инициализация.
1.1 Выбирают произвольную вершину графа и добавляют ее в остовное де-

рево.
1.2 Создают список всех ребер, которые соединяют текущие вершины

остовного дерева с вершинами, не входящими в него.
Шаг 2. Выбор ребер.
Пока в остовном дереве не будут все вершины.
2.1 Из списка ребер выбирают ребро с минимальным весом.
2.2 Добавляют выбранное ребро и соответствующую вершину в остовное

дерево.
2.3 Обновляют список ребер, добавив ребра, соединяющие новую вершину

с остальными, не входящими в остовное дерево вершинами.
Шаг 3. Завершение.
Когда все вершины добавлены в остовное дерево, алгоритм останавливается.
Формальные определения позволяют избежать двусмысленности. Каждый

https://doi.org/10.48550/

