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При работе со студентами, стремящимися к решению нестандартных задач 

и участию в математических олимпиадах, преподаватели используют специали-
зированные учебные пособия и сборники олимпиадных задач [1–4], а также ма-
териалы, размещенные на официальных сайтах олимпиад. Такие источники 
позволяют ознакомить студентов с форматом олимпиадных задач, их уровнем 
сложности и характерными методами решения. 

Однако широко известные классические задачники, традиционно применя-
емые на обычных практических занятиях, также могут служить эффективной 
основой для олимпиадной подготовки. Особое место среди них занимает 
«Сборник задач и упражнений по математическому анализу» Б. П. Демидови- 
ча [3]. Данный задачник хорошо известен как пособие, содержащее большое 
количество задач различного уровня сложности, однако его потенциал в кон-
тексте олимпиадной подготовки часто недооценивается. 

Задачник Б. П. Демидовича [3] содержит значительное число задач, кото-
рые по своему характеру близки к олимпиадным: они требуют нетривиального 
анализа условий, умения выявлять скрытые закономерности, использовать идеи 
монотонности, ограниченности, предельного перехода и аналогий между раз-
личными задачами. Такие задачи не могут быть использованы непосредственно 
на олимпиадах в силу их широкой известности, однако они полезны для фор-
мирования у студентов олимпиадного стиля мышления и отработки ключевых 
приемов решения. 

Проиллюстрируем сказанное на примере одной из типичных сквозных тем 
олимпиадных задач – нахождения предела последовательности, заданной ре-
куррентным соотношением. Задачи такого типа регулярно встречаются на сту-
денческих олимпиадах различного уровня и допускают разнообразные подхо-
ды: использование монотонности, оценку разностей соседних членов, примене-
ние теоремы Штольца, анализ подпоследовательностей и предельного перехода 
в функциональных соотношениях. 

Рассмотрим одну из таких задач, встречавшуюся на студенческой олим-
пиаде в Казани 2003 г., где требовалось исследовать поведение рекуррентно за-
данной последовательности (в [1] приведено разобранное решение). Пусть 
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Рассмотрим следующий пример – задачу из олимпиады студентов СПбПУ 
2020 г. (решение приведено в [2]). В задаче исследуется последовательность, 
заданная рекуррентным соотношением 2

11n nx x −= − , и требуется найти пределы 
ее четной и нечетной подпоследовательностей в зависимости от начального 
значения. Вначале рассматривается частный случай, при котором все члены по-
следовательности совпадают. Это приводит к исследованию алгебраического 
уравнения, решения которого определяют возможные постоянные значения по-
следовательности. Далее показано, что среди этих решений существует един-
ственное, лежащее в рассматриваемом промежутке, – именно оно соответствует 
существованию общего предела. 

В общем случае вводится подпоследовательность, состоящая из членов с 
нечетными индексами. Для данной подпоследовательности устанавливаются 
ограниченность и монотонность. Основным инструментом при этом является 
анализ поведения вспомогательной функции, определяющей рекуррентное со-
отношение, а также исследование знака разности соседних членов подпоследо-
вательности – это позволяет доказать существование конечного предела. Далее, 
используя связь между четными и нечетными членами исходной последова-
тельности, находятся пределы обеих подпоследовательностей.  

Аналогичные идеи лежат в основе ряда задач из [3]. В частности, в зада- 
че № 637.4 требуется исследовать поведение рекуррентной последовательности с 
использованием анализа вспомогательных выражений и свойств монотонности. 
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Если докажем, что существует конечный предел nx , то, переходя к пределу 
в равенстве (1), этот предел будет найден. Заметим, что для любого n справед-
ливо 0nx > . Исследуем монотонность данной последовательности: 
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Квадратный трехчлен в числителе имеет корни 1 5
2

− ± . Выделяя четную 

и нечетную подпоследовательности, проверяем при помощи метода математи-
ческой индукции, что четная подпоследовательность строго убывает, а нечет-
ная – возрастает. В результате простых математических выкладок получим, что 
обе подпоследовательности с разных сторон стремятся к конечному пределу 
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рассмотренному выше алгоритму решения и может использоваться как эффек-
тивный тренировочный материал при подготовке к решению олимпиадных за-
дач подобного типа. Это лишь один пример в рамках конкретной темы; при 
этом в каждом разделе знаменитого задачника [3], наряду с типовыми задачами 
разной сложности, можно найти целую россыпь такого рода «типичных»,  
но не типовых олимпиадных задач. 

Согласимся с автором пособия [4], утверждающим, что «любой достаточно 
большой массив нестандартных задач можно проклассифицировать, выделив в 
нем типичные черты». 

Таким образом, [3] может рассматриваться не только как классическое 
учебное пособие, но и как эффективный инструмент олимпиадной подготовки 
студентов. Его использование в рамках олимпиадных кружков и факультативов 
позволяет наработать навыки решения нестандартных задач и чувство анало-
гий. Тем самым задачник [3] позволяет органично сочетать углубленное изуче-
ние математического анализа с развитием нестандартного мышления, необхо-
димого для успешного участия в математических олимпиадах. 
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