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Воображение  важнее, чем знание. 
А. Эйнштейн 

 
Целью теории решения задач (ТРЗ) является исследование закономерно-

стей процесса поиска решения задач (ППРЗ) с последующей их формализацией. 
В [1] представлена новая формализация ППРЗ, которую я называю структурная 
схема решения задач (ССРЗ). Действие ССРЗ в [1] проиллюстрировано на про-
стых примерах. В статье продолжены исследования, начатые в [1]. В частности, 
показано, как работает ССРЗ в более сложных ситуациях.  

Задача 1. В треугольной пирамиде SABC (рис. 1) все плоские углы при 
вершине S прямые, SO – высота пирамиды. Известно, что отношение площа- 
ди ∆AOB к площади ∆BOC равно 49. Найдите отношение площади ∆ASB  
к площади ∆BSC. 

Решение  

Условимся в следующем: треугольные пирами-
ды с тремя прямыми плоскими углами при верши- 
не S будем называть прямоугольными. 

Сразу понятно, что объекты, между которыми 
следует установить связь, – это ∆AOB и ∆ASB,  
а также ∆BOC и ∆BSC. Качественная связь между 
указанными парами треугольников известна: ∆AOB является ортогональной 

     Рис. 1 
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проекцией ∆ASB на плоскость ABC, а ∆BOC – проекция ∆BSC на ту же плос-
кость ABC. Но нам нужно количественное соотношение между ними. Ничего не 
остается как «прогуляться» в информационную базу задачи (ИБЗ) и поискать 
там нужный инструмент-факт. К счастью, таковой имеется: 

– лемма 1 (о площади ортогональной проекции). Площадь проекции плос-
кой фигуры равна площади самой этой фигуры, умноженной на абсолютную 
величину косинуса двугранного угла между плоскостями. 

Увы, для дальнейшего продвижения леммы 1 недостаточно: нам потребу-
ется еще один факт, которого, по-видимому, в стандартной ИБЗ нет; 

– лемма 2. В прямоугольной пирамиде вершина пирамиды проектируется 
в ортоцентр основания. 

Доказательство. Пусть CM – высота ∆ABC, опущенная на сторону AB. Со-
единим точки S и M. Поскольку CS ⊥ (ASB) (это сразу вытекает из того, что пи-
рамида прямоугольная), то SM есть проекция CM на плоскость ASB. По теореме 
о трех перпендикулярах AB ⊥ CM ⇒ AB ⊥ SM ⇒ AB⊥(SCM). Значит,  
(ABC) ⊥ (SCM), ибо плоскость ABC проходит через перпендикуляр AB к плос-
кости SCM. Опустим теперь из вершины S перпендикуляр SO на плоскость ос-
нования. Из факта (ABC) ⊥ (SCM) следует, что этот перпендикуляр целиком 
принадлежит плоскости SCM, т. е. точка O находится на высоте CM основания. 
Дальнейшее очевидно. 

Этап 1. 

 S∆AOB = S∆ASB cosα;                                                   (1) 

 S∆BOC = S∆BSC cosβ.                                                   (2) 

Этап 2.  

S∆ASB = S∆ABC cosα;                                                   (3) 

   S∆BSC = S∆ABC cosβ.                                                   (4) 

Этап 3. 

 Из (1) и (3) ⇒ S∆AOB = S∆ABC cos2α.                                 (5) 

   Из (2) и (4) ⇒ S∆BOC = S∆ABC cos2β.                                 (6) 

Разделив (5) на (6), получим 
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Рис. 2       Рис. 3 

Замечание. При решении этой задачи фактически использовали так назы-
ваемый принцип «наоборот» (см. [3, с. 87], принцип № 13), причем он является 
ключевым моментом в ППРЗ. Действительно, стандартной для нас является си-
туация, когда боковые грани пирамиды проектируются с помощью высоты на 
ее основание. Оказалось, что для прямоугольной пирамиды каждая боковая 
грань является ортогональной проекцией основания пирамиды. 

Задача 2. Дан ∆ABC единичной площади (рис. 2 и 3). На его сторонах вы-
браны точки K, L, M так, что AK = 1/4AB, BL = 1/4BC, CM = 1/4CA. Отрезки CK 
и AL  пересекаются в точке P, BM и AL – в точке Q, CK и BM – в точке R. Найти 
площадь ∆PQR. 

 
 
 
 
 

 
 

Решение 
Этап 1. Рассмотрим типичный фрагмент конфигурации, присутствующий в 

нашей задаче. Из точки M проведем прямую, параллельную AL, и пусть L1 – 
точка пересечения этой прямой с отрезком BC. Пусть BL = a. Тогда LC = 3a. 
Пусть CL1 = x. Тогда LL1 = 3a – x. По обобщенной теореме Фалеса имеем 
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Пусть BQ = m, MQ = n. Тогда по той же теореме имеем  
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      Рис. 4 
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Этап 2. Поскольку в нашей конфигурации присутствует круговая (цикли-
ческая) симметрия, то площади всех «малышей» равны между собой и рав- 

ны 
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Комментарии. 
1. В литературе имеется другой подход к решению задачи 2 [4, с. 389,  

391, 392]. 
2. Решение приведенных в статье задач по моей просьбе осуществил стар-

ший преподаватель кафедры Н. Н. Бородин, за что хочу ему выразить искрен-
нюю благодарность. 

3. ССРЗ будем называть некоторую совокупность структурных единиц, 
объединенных общей целью достижения ТКР и соединенных последовательно 
или параллельно. 

Теперь поговорим о строении самой 
структурной единицы. Она включает четыре 
элемента (в авторской терминологии):  
объект, челнок, стрела, мешок (рис. 4): 

а) t1, t2, … – инструменты (объекты-
посредники); 

б) 1, 2, 3, 4 – базовые объекты; 
в) I1, I2, … – информация (удобно пред-

ставлять, что мы складываем ее в мешки). 
Детальный анализ приведенных решений задач с позиций ССРЗ предо-

ставляется читателю (алгоритм см. в [1]). 
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Международная студенческая олимпиада по математике RUDN Math 
Olymp проводится в Российском университете дружбы народов с 2023 г. Олим-
пиада состоит из индивидуального и командного туров. Особенностью олимпи-
ады является то, что командный тур проходит в виде турнира математических 
боев, где в играх участвуют тройки команд с дополнительной ролью наблюда-
телей (см. правила на официальном сайте math-battle-ru-2025.pdf). Девять силь-
нейших команд образуют три полуфинальные тройки. Команда-победитель из 
каждой тройки выходит в открытый суперфинал, который является ярким за-
вершением олимпиады. Остальные сборные одновременно с полуфиналом 
участвуют в дружеских играх. Абсолютные победители индивидуального и ко-
мандного туров получают денежные призы от спонсоров олимпиады и льготы 
на продолжение учебы в РУДН.  

Описанная специфика олимпиады накладывает определенную ответствен-
ность и специфику при составлении задач индивидуального и командного ту-
ров. В последние годы индивидуальный тур состоит из шести разноплановых 
задач (задачи индивидуального тура RMO-2024 доступны для скачивания по 
ссылке https://math-olymp.rudn.ru/doc/individual-criteria-2024.pdf).  

https://math-olymp.rudn.ru/doc/math-battle-ru-2025.pdf
https://math-olymp.rudn.ru/doc/individual-criteria-2024.pdf

