УДК 532:621.869.447.43

В. И. Мрочек, Т. В. Мрочек, С. Ф. Шашенко, А. И. Пузиков

ГИДРАВЛИЧЕСКИЕ СИСТЕМЫ УПРАВЛЕНИЯ РАБОЧИМ ОБОРУДОВАНИЕМ И НАПРАВЛЕНИЕМ ДВИЖЕНИЯ ФРОНТАЛЬНЫХ ПОГРУЗЧИКОВ

UDC 532:621.869.447.43

V. I. Mrochek, T. V. Mrochek, S. F. Shashenko, A. I. Puzikov

HYDRAULIC SYSTEMS TO CONTROL OPERATING EQUIPMENT AND DIRECTION OF MOTION IN FRONT-END LOADERS

Аннотация

Разработаны функциональные схемы гидросистем с дроссельным и объемным принципами регулирования наиболее распространенных отечественных и иностранных фронтальных погрузчиков. Проведен их анализ, позволяющий определить направления технического совершенствования и повышения конкурентоспособности.

Ключевые слова:

фронтальный погрузчик, функциональная схема, гидросистема, погрузочное оборудование, рулевое управление.

Abstract

The paper presents functional schemes of hydraulic systems with throttle and volumetric principles of control used in the most common domestic and foreign front-end loaders. The analysis of these functional schemes has been accomplished which allows determining directions of their technical improvement and competitiveness increase.

Key words:

front-end loader, functional scheme, hydraulic system, loading equipment, steering.

Фронтальные погрузчики относятся к числу наиболее распространенных строительно-дорожных машин. Широкое применение эти машины находят также в коммунальном, сельском, лесном и портовом хозяйствах, при добыче полезных ископаемых и др.

Важной составной частью, оказывающей влияние на технико-экономические показатели погрузчика, выступает гидравлическая система управления рабочим оборудованием и направлением движения. Далее указанную систему будем называть гидросистемой фронтального погрузчика и при этом подразумевать, что она содержит две подсистемы: управления рабочим оборудова-

нием и рулевого управления.

Рассмотрим наиболее значимые отличительные особенности гидросистем фронтальных погрузчиков, широко используемых в народном хозяйстве РБ и РФ.

Самым известным производителем фронтальных погрузчиков в РБ и РФ является ОАО «Амкодор». В 2013 г. на долю этого предприятия приходилось около 17 % рынка фронтальных погрузчиков в РФ [1]. В настоящее время линейка погрузчиков, изготавливаемых ОАО «Амкодор», представлена семью базовыми моделями грузоподъемностью от 2,5 до 7 т.

На рис. 1 приведена функциональ-

© Мрочек В. И., Мрочек Т. В., Шашенко С. Ф., Пузиков А. И., 2017

ная схема гидросистемы широко известного фронтального погрузчика А-333 (ТО-18Б) [2]. В обеих подсистемах рассматриваемой гидросхемы используются два одинаковых нерегулируемых аксиально-поршневых насоса (Н1 и Н2). В подсистеме рулевого управления установлен также реверсивный гидромотор М, имеющий постоянную кине-

матическую связь с колесами и применяемый при буксировке погрузчика. Подсистема управления погрузочным оборудованием 1 содержит два контура управления: стрелой (цилиндры Ц1 и Ц2) и ковшом (цилиндр Ц3). В обоих контурах реализован дроссельный принцип регулирования.

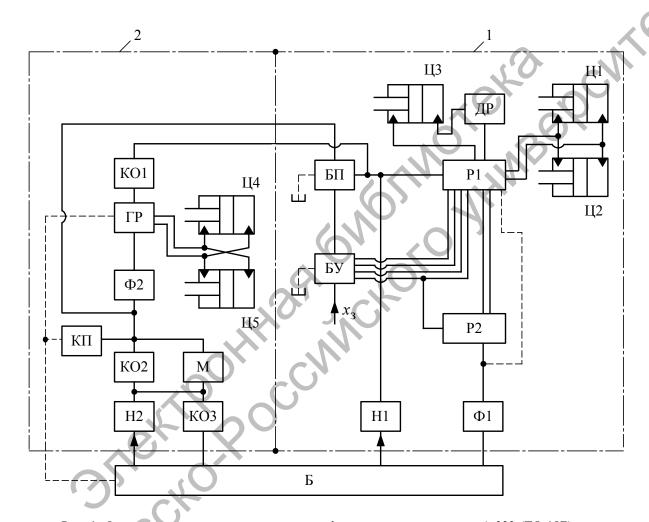


Рис. 1. Функциональная схема гидросистемы фронтального погрузчика A-333 (ТО-18Б): 1- подсистема управления погрузочным оборудованием; 2- подсистема рулевого управления; H1, H2- насосы; M- гидромотор; P1, P2- гидрораспределители; U1, U2- гидроцилиндры управления стрелой; U3- гидроцилиндры управления ковшом; U4, U5- гидроцилиндры поворота; U3- блок питания; U3- блок управления; U3- гидроруль; U3- гидрофомотор; U3- гидрофомотор; U3- гидрофомотор кольные клапаны; U3- гидрофомотор клапания; U3- г

Регулирование скорости выполнения рабочих операций осуществляется за счет дросселирования с помощью золотников гидрораспределителя Р1 потоков рабочей жидкости. При этом гидрораспределитель Р1 содержит две рабочие секции, в каждой из которых уста-

новлены трехпозиционные золотники. Управление золотниками гидрораспределителя Р1 производится с помощью блока управления БУ. Задающее воздействие x_3 подается оператором на одну из четырех рукояток БУ. Питание БУ осуществляется низким давлением

(3...4,5 МПа), создаваемым блоком питания БП. Блок питания содержит пневмогидроаккумулятор и четыре клапана: ИЛИ, редукционный, предохранительный, обратный. На вход БП рабочая жидкость поступает от насосов Н1 и Н2. гидрораспредели-Двухпозиционный тель Р2 предназначен для обеспечения в контуре управления стрелой (цилиндры Ц1 и Ц2) позиции «плавающая». Включение Р2 осуществляется давлением, формируемым БУ и имеющим более высокий уровень, чем тот, который требуется для управления золотником распределителя Р1. При включении гидрораспределителя предохранительных клапана, установленные в Р1 на выходах к Ц1 и Ц2, настраиваются на низкие давления. Давление в напорной линии насоса Н1 ограничивается третьим предохранительным клапаном, установленным в Р1.

Разгрузка насоса H1 обеспечивается путем перепуска рабочей жидкости на слив через распределитель P1 (при нейтральных позициях обоих золотников P1).

Разгрузка насоса Н2 осуществляется путем подключения его к сливу через подсистему управления погрузочным оборудованием (через золотник ГР и два золотника Р1). При этом все золотники (ГР и Р1) должны находиться в нейтральных позициях. При включении рабочих позиций в распределителе ГР насос Н2 отключается от слива и работает только на рулевое управление. При нейтральной позиции распределителя ГР насос Н2 подключается к напорной линии насоса Н1. В этом случае при осуществлении управления погрузочным оборудованием питание подсистемы 1 производится одновременно от обоих насосов (Н1 и Н2).

Клапан КП настроен на давление 15 МПа, а предохранительный клапан в напорной линии насоса Н1 (расположен в Р1) – на давление 20 МПа.

Для улучшения условий всасывания насосов, а также снижения возможности попадания в рабочую жидкость загрязнителей в рассматриваемой системе установлен гидробак Б закрытого типа, в котором поддерживается избыточное давление в пределах 20...75 кПа.

На рис. 2 представлена функциональная схема системы, разработанной на ОАО «Амкодор» сравнительно недавно [3]. Обозначения устройств на рис. 2 соответствуют принятым на рис. 1.

Отличительные особенности отображенной на рис. 2 ехемы (в сравнении с рис. 1) заключаются в следующем:

- подсистема управления погрузочным оборудованием содержит только один распределитель Р. Обеспечение в контуре управления стрелой (цилиндры Ц1 и Ц2) позиции «плавающая» достигается путем установки в Р четырехпозиционного золотника;
- в блоке БУ вместо четырех предусмотрены две рукоятки;
- в подсистеме рулевого управления установлен приоритетный клапан КПР. обеспечивающий подключение насоса Н2 (при нейтральной позиции золотника ГР) к напорной линии насоса Н1. В системе (рис. 1) функции приоритетного клапана выполнял распределитель ГР. Также в подсистеме рулевого управления установлен клапан разгрузки насоса КРН (насоса Н2). Вместо гидромотора М в данной схеме установлен реверсивный насос Н3, имеющий постоянную кинематическую связь с колесами погрузчика.

На рис. 3 представлена функциональная схема подсистемы управления погрузочным управлением машины MoA3-4055 [4].

Указанный фронтальный погрузчик называют погрузочно-доставочной машиной (ПДМ). Предназначена ПДМ для работы в подземных условиях при добыче полезных ископаемых.

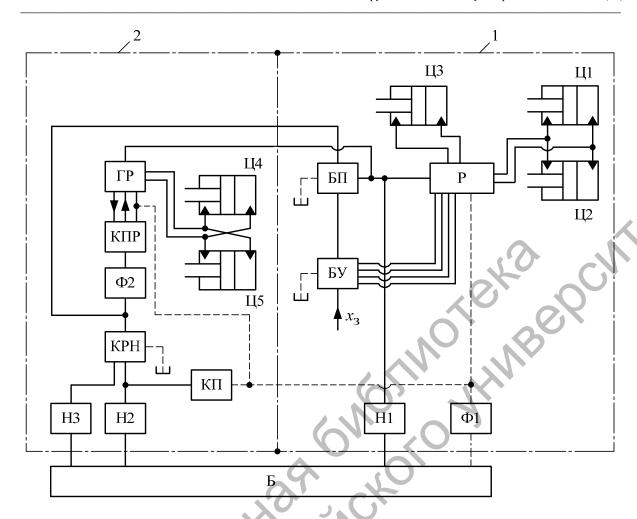


Рис. 2. Функциональная схема гидросистемы фронтальных погрузчиков Амкодор-333В, 333В-01

Гидросистема машины МоАЗ-4055 объединяет три подсистемы управления: погрузочным оборудованием, рулевым управлением И тормозами. В каждой из подсистем установлено по одному насосу (фирмы SAUER DANFOSS). Отличительная особенность подсистемы на рис. З заключается в том, что в ней предусмотрены три контура управления: стрелой, ковшом и выталкивателем. При этом для управлетремя контурами используется дросселирующий распределитель с двумя рабочими секциями, в каждой из которых установлен трехпозиционный золотник. В связи с этим возникла необходимость в установке дополнительных устройств: блока управления БУ2, блока логики БЛ и переключателя П. Блок логики содержит три логических клапана «ИЛИ», а рукоятка БУ2 имеет две фиксируемые позиции. В одной из них с

помощью БУ1 осуществляется управление ковшом (цилиндр Ц3) а во второй – выталкивателем (цилиндры Ц4 и Ц5). В блоке БУ1 для управления используется джойстик.

Отличие блока питания БП от представленных на рис. 1 и 2 заключается в том, что в данном случае гидропневматический аккумулятор расположен не в блоке, а в подсистеме управления тормозами ПУТ. Причем в ПУТ установлены три аккумулятора. Гидравлический сигнал от аккумуляторов ПУТ подводится к БП. Кроме этого, БП соединен с насосом подсистемы рулевого управления ПРУ.

В рассматриваемой подсистеме также предусмотрено подключение через приоритетный клапан КПР насоса подсистемы рулевого управления к выходу насоса Н1.

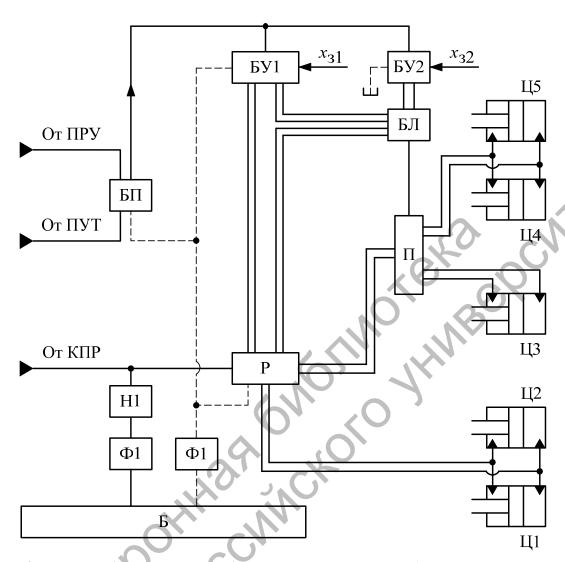


Рис. 3. Функциональная схема подсистемы управления погрузочным оборудованием погрузочно-доставочной машины MoA3-4055: Н1 – насос; Р – гидрораспределитель; П – переключатель; Ц1, Ц2 – цилиндры управления стрелой; Ц3 – цилиндр управления ковшом; Ц4, Ц5 – цилиндры управления выталкивателем; БП – блок питания; БУ1, БУ2 – блоки управления; БЛ – блок логики; Ф1, Ф2 – фильтры; Б – бак; ПРУ – подсистема рулевого управления; ПУТ – подсистема управления тормозами; КПР – приоритетный клапан; x_{31} , x_{32} – задающие воздействия

На рис. 4 представлена функциональная схема гидросистемы фронтального погрузчика БелАЗ-7822 [5]. В данной системе установлены два регулируемых насоса Н1 и Н3 (фирмы Bosch Rexroth). Напорная линия насоса Н1 постоянно подключена к распределителю Р, а напорная линия насоса Н3 подключается к распределителю приоритетным клапаном, расположенным в РУ (при нейтральной позиции золотника распределителя рулевого управления).

Дросселирующий распределитель Р имеет четыре рабочие секции, в каждой

из которых установлен трехпозиционный золотник. Применение четырех секций для управления двумя контурами обусловлено большими расходами рабочей жидкости в гидросистеме и стремлением уменьшить потери энергии. При этом первая и вторая секции Р запитаны от Н1, а третья и четвертая — от Н3. Большие расходы в гидросистеме вызваны тем, что погрузчик БелАЗ-7822 (из всех рассмотренных в данной статье) имеет наибольшую грузоподъемность — 12 т, а увеличение грузоподъемности, как известно, сопровождается и ростом

расходов. Кроме этого, в распределителе установлено шесть предохранительных клапанов: два – в линиях питания,

четыре – в линиях управления цилиндрами.

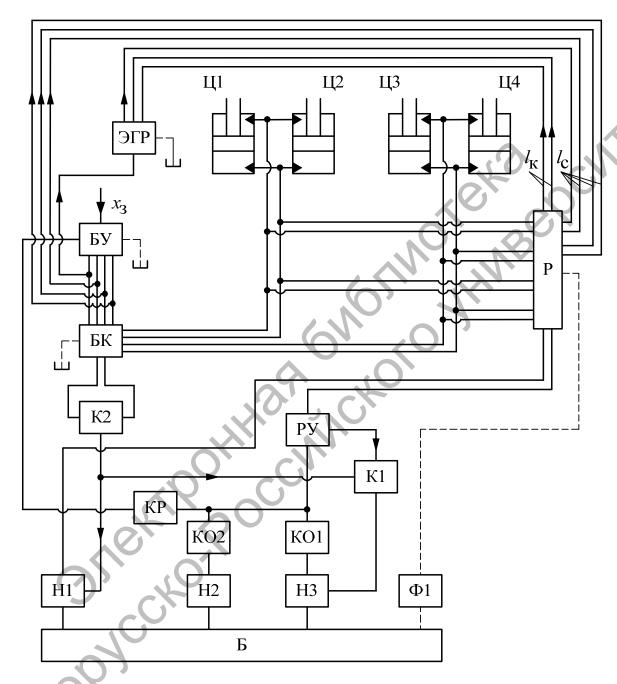


Рис. 4. Функциональная схема гидросистемы фронтального погрузчика БелАЗ-7822: H1 – насос подсистемы управления погрузочным оборудованием; H2 – аварийный насос; H3 – насос подсистемы рулевого управления; PY – рулевое управление; PY – илиндры управление; PY – управления ковшом; PY – гидрораспределитель; PY – олектрогидравлический распределитель; PY – блок управления; PY – блок клапанов; PY – блок клапанов; PY – обратные клапаны; PY – обратные клапаны; PY – обратные клапаны; PY – фильтр; PY – бак; PY – задающее воздействие; PY – линии управления предохранительными клапанами; PY – линии управления золотниками рабочих секций

Для изменения скоростей выполнения рабочих операций регулируемые насосы H1 и H3 содержат регуляторы,

изменяющие подачу в зависимости от разности давлений Δp на выходе насоса и в полостях цилиндров (тех, к которым

Машиностроение

в данном движении подключен насос). При этом, чем выше Δp , тем меньше рабочий объем и подача насоса, а следовательно, и скорость выполнения рабочей операции.

Основной вклад в сопротивление линий, соединяющих насосы с цилиндрами, вносит распределитель Р. Сопротивление распределителя зависит от положений золотников, определяемых уровнями давлений в торцевых полостях, задаваемых с помощью блока управления БУ. Блок управления содержит четыре пары устройств, каждая из которых состоит из двухпозиционнотрехлинейного распределителя с ручным управлением и редукционного клапана. Питание БУ осуществляется низким давлением (с выхода редукционного клапана КР). Сигналы управления, формируемые БУ, подводятся одновременно к торцевым полостям золотников Р и к блоку клапанов БК. Блок клапанов предназначен для соединения выходов рабочих секций распределителя Р (линий управления цилиндрами) с линиями управления регуляторов насосов Н1 и Н3.

Электрогидравлический распределитель ЭГР содержит три двухпозиционных золотника, управляемые электромагнитами. При этом два золотника используются для управления двумя предохранительными клапанами Р и контуре управления обеспечения В стрелой позиции «плавающая». Третий золотник с электромагнитом предназначен для ограничения верхнего положения стрелы. Через этот золотник ЭГР проходит сигнал управления от БУ к Р. При срабатывании золотника линия управления подключается к сливу, что приводит к выключению рабочих секций распределителя Р.

На рис. 5 отображена функциональная схема гидросистемы фронтального погрузчика польского производства Dressta 534E грузоподъемностью 5 т [6]. Отличительной особенностью данного погрузчика является то, что его создатели при проектировании ориентировались на использование узлов и агрегатов польского производства. Для питания гидросистемы применяются шестеренные насосы H1...H3. Насос H3 реверсивный. Подключается этот насос блоком клапанов аварийной системы поворота БКАС к РУ и БП при неработающем насосе H2.

Дросселирующий распределитель Р содержит две рабочие секции: управления стрелой и ковшом. В секции управления стрелой установлен четырехпозиционный золотник, а в секции управления ковшом — трехпозиционный. В принципе, схемы распределителя Р и блока питания БП не отличаются от рассмотренных ранее.

Важным отличием схемы, представленной на рис. 5, является наличие в ней более совершенной системы охлаждения рабочей жидкости и клапана аварийного опускания стрелы КАО, имеющего ручное управление.

Система охлаждения содержит регулируемый аксиально-поршневой насос H4, гидромотор М привода вентилятора и теплообменник Т. Использование приведенной системы охлаждения позволяет обеспечивать требуемые температурные режимы в гидравлической части при работе погрузчика в технологических циклах большой напряженности.

На рис. 6 представлена функциональная схема гидросистемы фронтального погрузчика ZL50G производства КНР (фирма XCMG) [7]. Доля фирмы XCMG в импорте погрузчиков в 2013 г. в РФ составляла 21 % [1].

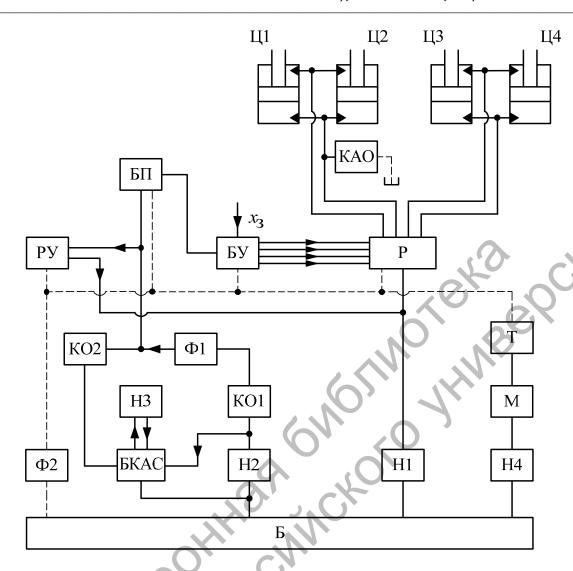


Рис. 5. Функциональная схема гидросистемы фронтального погрузчика Dressta 534E: Н1 – насос подсистемы управления погрузочным оборудованием; Н2 – насос рулевого управления; Н3 – насос аварийной системы поворота; Н4 – насос системы охлаждения; М – мотор привода вентилятора; Т – теплообменник; Ц1, Ц2 – цилиндры управления стрелой; Ц3, Ц4 – цилиндры управления ковшом; БП, БУ – блоки питания и управления; Р – распределитель; РУ – рулевое управление; КАО – клапан аварийного опускания стрелы; БКАС – блок клапанов аварийной системы поворота; КО1, КО2 – обратные клапаны; Ф1, Ф2 – фильтры; Б – бак; x_3 – задающее воздействие

В рассматриваемой схеме используются два нерегулируемых насоса Н1 и Н2. Дросселирующий распределитель Р содержит две рабочие секции, в каждой из которых установлен трехпозиционный золотник. Предусмотрено также подключение насоса Н2 (при выключенном распределителе РУ) к напорной линии насоса Н1.

Отличительной особенностью вышеприведенной схемы является то, что в ней отсутствует блок питания, предназначенный для формирования давления низкого уровня, подводимого к блоку

управления БУ и используемого для управления распределителем Р. Для получения давления низкого уровня в схеме (см. рис. 6) установлен двухпоточный насос Н1, одна секция которого (с небольшой подачей) подключена к БУ и РУ. Давление на выходе этой секции поддерживается переливным клапаном и составляет 2,5 МПа. Основная секция (вторая) насоса Н1 с большой подачей используется для питания распределителя Р. Подвод низкого уровня давления к РУ (чего не было у всех рассмотренных ранее схем) обусловлен тем, что

Машиностроение

рулевое управление погрузчика ZL50G принципиально отличается от других,

имея при этом более простое устройство и низкую себестоимость.

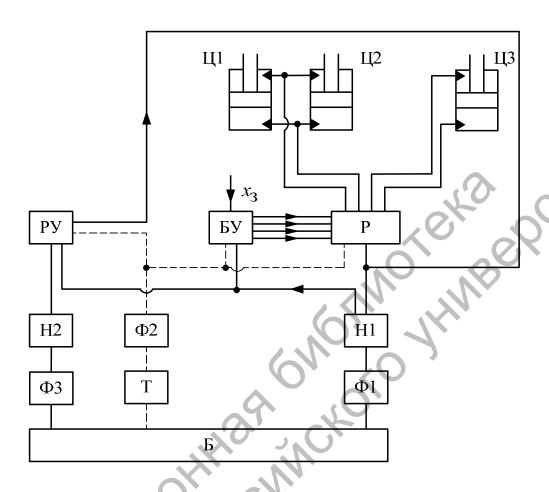


Рис. 6. Функциональная схема гидросистемы фронтального погрузчика ZL50G: H1 – насос управления подсистемой погрузочного оборудования; H2 – насос подсистемы рулевого управления; Ц1, Ц2 – цилиндры управления стрелой; Ц3 – цилиндр управления ковшом; Р – распределитель; БУ – блок управления; РУ – рулевое управление; Φ 1... Φ 3 – фильтры; Т – теплообменник; Б – бак; x_3 – задающее воздействие

Выводы

Разработаны функциональные схемы гидросистем управления погрузочным оборудованием и направлением движения наиболее известных погрузчиков.

В результате выполненного структурного анализа установлено, что:

- в подсистеме управления погрузочным оборудованием во всех рассмотренных схемах применяются в основном гидроприводы с дроссельным принципом регулирования, содержащие нерегулируемые насосы. Объемный принцип регулирования реализован

только у погрузчика БелАЗ-7822, при этом предусмотрено использование регулируемых насосов;

- во всех схемах предусмотрено подключение насоса рулевого управления через приоритетный клапан к напорной линии насоса управления погрузочным оборудованием;
- управление погрузочным оборудованием осуществляется с помощью гидравлического блока, содержащего джойстик;
- во всех схемах при нейтральных позициях золотников распределителей обеспечивается разгрузка насосов.

СПИСОК ЛИТЕРАТУРЫ

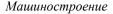
- 1. Новоселов, В. Пациент скорее жив? Российский рынок фронтальных погрузчиков / В. Новоселов / Строительная техника и технологии. – 2014. – № 6. – С. 64–72.
- 2. Погрузчик фронтальный одноковшовый Амкодор-333 (ТО-18Б). Руководство по эксплуатации / М. С. Войчинский [и др.] / ОАО «Амкодор-Ударник». – Минск, 2002. – 180 с.
- 3. Погрузчик фронтальный одноковшовый Амкодор-333В, 333В-01. Руководство по эксплуатации 333B.00.00.000 РЭ / М. С. Войчинский [и др.] / ОАО «Амкодор-Ударник». - Минск, 2015. - 180 с.
 - 4. Руководство по эксплуатации МоАЗ-4055-3902002-34 РЭ. Могилев, 2002. 190 с.
- 5. Фронтальные погрузчики БЕЛАЗ-7822, БЕЛАЗ-78221 и их модификации. Руководство по эксплуатации 7822-3902015 РЭ / ОАО «БЕЛАЗ» – управляющая компания холдинга «БЕЛАЗ-ХОЛДИНГ», Минск, 2015. – 226 с.
- 6. Инструкция по обслуживанию фронтального погрузчика 534Е от серийного номера 87501 и выше DRESSTA Co. Ltd. OM534E07/1R. – 273 с. [Электронный ресурс]. – 2012. – Режим доступа: http://L-34.ru Инструкция по обслуживанию погрузчика Dressta 534. – Дата доступа: 20.12.2016.
- 7. Фронтальный погрузчик ZL50G. Руководство оператора / Xuzhou Construction Machinery Group Inc.(XCMG), Xuzhou City, Jiangsu Province, PRC. – 74 с. [Электронный ресурс]. – 2014. – Режим доступа: http://www.sts-amur.ru/documents/xcmg/. – Дата доступа: 18.12.2016.

Статья сдана в редакцию 28 февраля 2017 года

Владимир Иванович Мрочек, канд. техн. наук, доц., Белорусско-Российский университет. E-mail: mrovlad@mail.ru.

Татьяна Владимировна Мрочек, канд. техн. наук, доц., Белорусско-Российский университет.

Федорович Белорусско-Российский Сергей Шашенко, ассистент, E-mail: shashenko sergey@ mail.ru.


Алексей Игоревич Пузиков, студент, Белорусско-Российский университет.

Vladimir Ivanovich Mrochek, PhD (Engineering), Associate Prof., Belarusian-Russian University. E-mail: mrovlad@mail.ru.

Tatiana Vladimirovna Mrochek, PhD (Engineering), Associate Prof., Belarusian-Russian University.

al. assista student, Belan Sergey Fedorovich Shashenko, assistant lecturer, Belarusian-Russian University. E-mail: shashenko sergey@

Alexey Igorevich Puzikov, student, Belarusian-Russian University.

