УДК 620.178

АНАЛИЗ ВЛИЯНИЯ ПОДПОВЕРХНОСТНЫХ ДЕФЕКТОВ НА РЕАКЦИЮ КОМПОЗИЦИОННОГО УГЛЕРОДНОГО МАТЕРИАЛА ПРИ УДАРНОМ МИКРОИНДЕНТИРОВАНИИ

А. П. КРЕНЬ, *И. Ю. КИНЖАГУЛОВ, Т. А. ПРОТАСЕНЯ, *А. В. ФЕДОРОВ

ГНУ «Институт прикладной физики НАН Беларуси» *ФГАОУ ВО «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики» Минск, Беларусь; Санкт-Петербург, Россия

UDC 620.178

ANALYSIS OF THE INFLUENCE OF UNDERSURFACE DEFECTS ON THE RESPONSE OF THE COMPOSITE CARBON MATERIAL DURING IMPACT MICROINDENENTATION *A. P. KREN, I. Y. KINZHAGULOV, T. A. PRATASENIA, A. V. FEDOROV*

Аннотация

В статье приводятся сведения о возможности обнаружения дефектов типа «расслоение» на основании контроля твердости индентирования определяемой согласно СТБ 2495–2017.

Ключевые слова:

индентирование, композиты, дефект, твердость.

Abstract

The paper provides information on the possibility of detecting defects of the "delamination" type on the basis of control of the indentation hardness determined in accordance with STB 2495–2017.

Key words:

indentation, composites, defect, hardness.

В настоящее время углерод-углеродные композиционные материалы (УУКМ) и углепластики находят широкое применение в различных отраслях промышленности и особенно при создании космической и авиационной техники. Они используются для изготовления обтекателей, сопел двигателей и других изделий, подвергающихся интенсивному тепловому воздействию. Одним из наиболее опасных дефектов для таких материалов является расслоение, которое может привести к катастрофическим последствиям. Кроме того, для рассматриваемых материалов важным является сохранение их физико-механических характеристик на протяжении всей стадии активной эксплуатации. В настоящей работе исследовалась возможность применения метода динамического индентирования для поиска подповерхностных дефектов в виде пустот или расслоений. Данный метод уже успешно используется для контроля физико-механических свойств [1–3]. С целью его применения был разработан стандарт СТБ 2495–2017 «Контроль неразрушающий. Определение физико-механических характеристик конструкционных материалов методами индентирования».

Для экспериментальной проверки возможностей метода и адаптации оборудования к особенностям контроля композиционных материалов был изготовлен прибор (рис. 1), позволяющий осуществить точное позиционирование ударного преобразователя и провести измерение в заданной точке контролируемого образца.

Рис. 1. Внешний вид прибора: 1 – датчик; 2 – электронный блок; 3 – планшетный компьютер; 4 – объект контроля (образец из УУКМ)

Объектом контроля являлся образец из УУКМ на основе ткани УТ– 900, прошедший термоградиентное уплотнение пиролитическим углеродом. Образец имел толщину ~10 мм. Дефект вида «расслоение» моделировался путем закладки пластин из слюды размерами 50х50 мм до операции карбонизации. Схема закладки дефектов в образцах показана на рис. 2.

Контролируемым параметром являлась твердость индентирования H_{it} поверхностных слоев образцов УУКМ. Индентор был выполнен из карбида вольфрама с радиусом закругления 0,5 мм, массой 5 г. Предударная скорость составляла около 0,9 м/с.

Рис. 2. Образец для испытаний: а – схема расположения закладок (дефектов); б – общий вид и увеличенное изображение дефектной области

На рис. 3 приведены характерные диаграммы ударного вдавливания индентора в испытуемый материал в различных областях объекта контроля, которые отражают различия свойств контролируемых участков. Расчет *H*_{*it*} на основе полученных диаграмм показывает существенное различие ее значений для бездефектной области и области над искусственными дефектами.

Рис. 3. Диаграммы «контактное усилие – глубина внедрения» (Р-α)

При проведении эксперимента контроль проводился в режиме последовательного сканирования по поверхности с шагом 5–10 мм. Полученные результаты представлены в виде диаграммы на рис. 4, представляющей собой распределение значений твердости индентирования в зависимости от координат контролируемых точек на поверхности объекта контроля. Важно отметить, что значения твердости индентирования, полученные во всех областях над искусственными дефектами, примерно, одинаковые ($H_{it} = 180-190$ ед.), несмотря на то, что глубина закладки дефектов различна. Это свидетельствует о том, что твердость индентирования H_{it} в этих областях не связана с наличием дефектов (по крайней мере на глубине залегания дефектов более 2–3 мм), а определяется отличиями в структуре (отсутствием прошивки) и, следовательно, свойств материала образцов.

Рис. 4. Диаграмма распределения твёрдости по поверхности образца из УУКМ

Таким образом, в ходе эксперимента была обоснована возможность применения метода динамического индентирования для контроля однородности распределения механических свойств поверхностных слоев образцов из УУКМ.

Показано, что нарушения в структуре армирующих слоев (например, отсутствие прошивки каркаса) закономерно приводит к изменению физико-механических характеристик материала в этих участках по сравнению с бездефектными областями, о чем свидетельствуют различия значений твердости индентирования.

СПИСОК ЛИТЕРАТУРЫ

1. **Рудницкий, В. А.** Соотношение динамической и статической твердости металлов / В. А. Рудницкий, А. П. Крень, Г. А. Ланцман // Вести НАН Беларуси. – 2016. – № 4. – С. 16–22.

2. Степанов, Г. В. Сопротивление металлов динамическому внедрению индентора / Г. В. Степанов, Э. Г. Сафаров // Проблемы прочности. – 1986. – № 5. – С. 80–83.

3. Рудницкий, В. А. Определение физико-механических характеристик металлов на основе анализа особенностей их динамического локального деформирования / В. А. Рудницкий, А. П. Крень, Г. А. Ланцман // Неразрушающий контроль и техническая диагностика. – 2016. – № 4. – С. 61–67.

E-mail: alekspk@mail.ru