УДК 621.317.422:593.816.2:621.318.1

АППАРАТНО-ПРОГРАММНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ НАЗЕМНЫХ ИСПЫТАНИЙ БЛОКОВ БОРТОВОГО СПЕКТРОМЕТРА ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

С. А. ГРИШИН, В. А. СЕЛЯНТЬЕВ, Н. С. НЕДВЕЦКИЙ, *С. В. КОЛДАШОВ, *С. Ю. АЛЕКСАНДРИН

ГНПО «Оптика, оптоэлектроника и лазерная техника»

*ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ»

Минск, Беларусь; Москва, Россия

UDC 621.317.422:593.816.2:621.318.1

HARDWARE AND SOFTWARE MEANS FOR GROUND TESTING OF ON-BOARD IONIZATION RADIATION SPECTROMETER UNITS

S. A. GRISHIN, V. A. SELIANTIEV, N. S. NEDVETSKI, S. V. KOLDASHOV, S. Y. ALEKSANDRIN

Аннотация

Представлены результаты разработки, испытаний и применения аппаратно-программного комплекса, предназначенного для диагностики технического состояния, наладки и контроля функционирования блоков бортового мультидетекторного сцинтилляционного спектрометра излучений и частиц околоземного космического пространства. Работы выполнены в рамках российскобелорусского сотрудничества по научно-технической программе Союзного государства «Мониторинг – СГ».

Ключевые слова:

контрольно-испытательная аппаратура, мультидетекторный сцинтилляционный спектрометр, ионизирующее космическое излучение, наземные испытания бортовой спутниковой научной аппаратуры.

Abstract

Results of development, testing and application of hardware and software complex intended for diagnosing technical condition, adjustment and monitoring of operation of blocks of on-board multi-detector scintillation spectrometer of emissions and particles of near-Earth space are presented. The work was carried out within the framework of Russian-Belarusian cooperation on scientific and technical program of the Union State "Monitoring – SG".

Key words:

control and testing equipment, multidetector scintillation spectrometer, ionizing cosmic radiation, ground tests of on-board satellite scientific equipment.

Введение

Характеристики и надежность бортовой спектрометрической аппаратуры, предназначенной для мониторинга ионизирующих излучений в околоземном космическом пространстве, в значительной степени зависят от

качества и полноты проведения наземных испытаний и калибровок, требующих значительных временных и материальных затрат. Сокращения этих затрат можно добиться путем применения аппаратно-программных средств контроля [1–2], позволяющих проводить диагностику технического состояния разрабатываемой аппаратуры в автоматическом режиме.

Комплекс средств тестирования

В ГНПО «Оптика, оптоэлектроника и лазерная техника» НАН Беларуси совместно с Национальным исследовательским ядерным университетом «МИФИ» был разработан и изготовлен экспериментальный образец комплекса средств тестирования (КСТ), показанный на рис. 1, который позволяет автоматизировать процессы испытаний и контроля, упрощает разработку и отладку алгоритмического и программного обеспечения, сокращает время и трудоемкость диагностики блоков мультидетекторного бортового сцинтилляционного спектрометра.

Комплекс средств тестирования обеспечивает:

- питание блоков спектрометра;
- тестирование блоков сцинтилляционного спектрометра;
- проведение отбора логических сигналов и формирование триггерных сигналов;
 - контроль телеметрии;
- сбор, накопление, передачу массивов информации по каналам телеметрии и протоколирование результатов испытаний.

Место рабочее оператора

Блок

средств

программно-аппаратных

Блок имитации: 1 – блок дискриминаторов;2 – блок каналов связи; 3 – блок преобразователей; 4 – источник питания высоковольтный: 5 – источник питания низковольтный

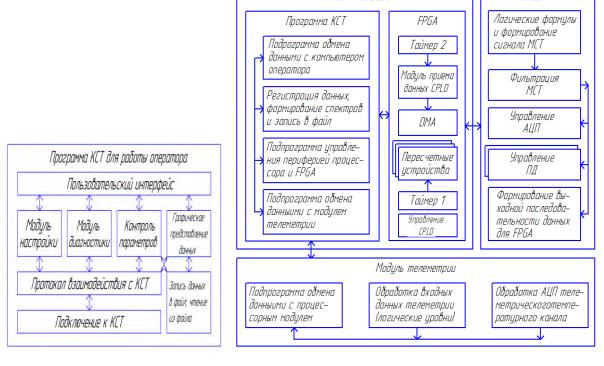
Регистрирующие приборы

Рис. 1. Комплекс средств тестирования

В состав разработанного и изготовленного экспериментального образца КСТ входят следующие блоки (рис. 2): блок электроники, состоящий из блока программно-аппаратных средств А4 и блока имитации. В блок имитации входят блок каналов связи А5, блок дискриминаторов А6, блок преобразователей А7, источник питания низковольтный А8, источник питания высоковольтный А9; место рабочее оператора А1; регистрирующие приборы А2, А3, А10.



Рис. 2. Схема структурная комплекса средств тестирования


Технические характеристики:

- количество входных каналов 44;
- количество контролируемых параметров 17;
- количество команд управления –15;
- мощность потребления –450 Вт.

Программное обеспечение

Программное обеспечение КСТ, состоит из программы оператора и программы для управления блоком программно-аппаратных средств ПАС (рис. 3). Программное обеспечение позволяет задавать режимы работы КСТ, вести обработку и регистрацию поступающей информации, сохранять и выводить результаты на экран и бумажный носитель в виде графиков, таблиц и протоколов испытаний. В состав программного обеспечения входят описания аппаратуры VHDL для функционирования программируемой логики в составе блока ПАС. Управление КСТ осуществляется с персонального компьютера под управлением операционной системы Windows 7, с предустановленным программным обеспечением КСТ. ехе. Взаимодействие между программой оператора и программой блока ПАС осуществляется посредством интерфейса USB 2.0.

Ax-SoM-XC7Z020

(PII)

Рис. 3. Структура программного обеспечения: а – структура программы оператора; б – структура программы блока программно-аппаратных средств

Для взаимодействия программы оператора с программой блока ПАС применен протокол, в котором команды и данные передаются в виде ASCII символов.

Разработанное программное обеспечение позволяет автоматизировать процесс испытаний блоков спектрометра (рис. 4).

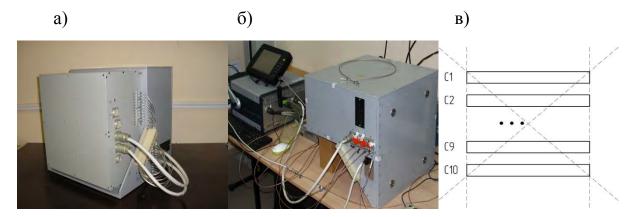


Рис. 4. Испытания блоков спектрометра с помощью комплекса средств тестирования: а — испытываемый бортовой спектрометр; б — проверка функционирования многослойного сцинтилляционного детектора; в — схема расположения сцинтилляторов в многослойном детекторе

В меню главного окна программы КСТ (рис. 5), можно выбрать проверяемый блок, настроить параметры испытательных сигналов и запустить процесс тестирования.

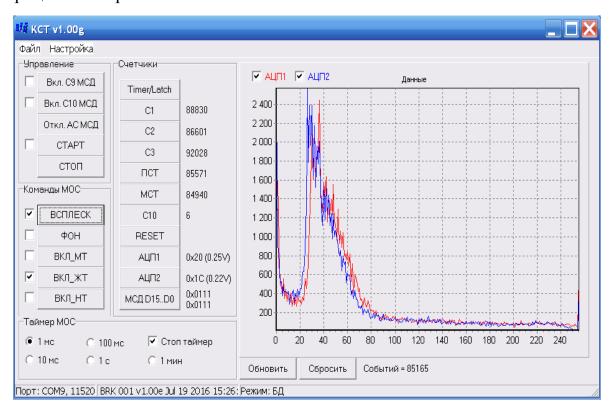


Рис. 5. Главное окно программы для задания режимов и отображения результатов тестирования

Испытания блоков спектрометра показали полезность и высокую эффективность применения разработанного экспериментального образца комплекса средств тестирования. Достигнуто существенное уменьшение трудоемкости выполнения операций контроля основных параметров испытываемой аппаратуры при одновременном повышении качества выполняемых работ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аппаратно-программные средства для наземной отработки бортовых спектрометров заряженных частиц / А. Г. Батищев [и др.] // Ядерная физика и инжиниринг. 2014. T. 5, № 3. C. 247–256.
- 2. Создание и применение контрольно-испытательной аппаратуры для проведения экспериментальных исследований и отработки методов калибровки космофизических спектрометров / С. А. Гришин [и др.] // V конгресса физиков Беларуси : сб. науч. тр., 27–30 окт. 2015 г. Минск : Изд-во Ковчег, 2015. С. 239–240.

E-mail: grsamail@mail.ru

