УДК 667

АНТИКОРРОЗИОННЫЕ АЛКИДНЫЕ ГРУНТОВКИ НА ОСНОВЕ ФОСФАТНЫХ ПИГМЕНТОВ

А. Л. ШУТОВА, А. И. ГЛОБА, Н. Р. ПРОКОПЧУК, Е. И. ВИНГЛИНСКАЯ Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

Актуальной задачей современной лакокрасочной промышленности является расширение ассортимента, снижение себестоимости и повышение качества защитных покрытий путем применения новых видов пигментов на основе недефицитных материалов для защиты металлических поверхностей от коррозии. В связи с этим целью данного исследования являлась оценка возможности применения новых синтезированных соединений, относящихся к классу фосфатов, в качестве антикоррозионных пигментов в алкидных грунтовках.

В качестве пигментов исследовали следующие соединения: $CoO\cdot Al_2O_3\cdot P_2O_5$; $NiO\cdot Al_2O_3\cdot P_2O_5$; пигмент на основе фторапатита; пигмент на основе гальванического шлама OAO «Атлант»; пигмент на основе фосфата кобальта и оксида цинка (40:60); пигмент на основе фосфата железа и оксида цинка (40:60).

Были изучены технико-физические свойства (маслоемкость, содержание водорастворимых веществ, рН водной вытяжки) синтезированных соединений. На основе базовых рецептур [1] изготовлены грунтовочные составы, в которых пигментная часть полностью заменена на исследуемые пигменты, что позволило определить их непосредственное влияние на защитные свойства грунтовочных покрытий. В качестве пленкообразователя использовали алкидно-стирольный олигомер «Хим-Алкид 40/60» (ТУ У 24.1-13395997-014:2006).

Пигментированные композиции получали диспергированием композиции на лабораторном диссольвере DISPERMAT®CA с использованием циркониевого бисера со скоростью вращения мешалки 3800—4000 об/мин. Покрытия получали методом пневмораспыления на металлических и стеклянных подложках. Отверждение покрытий осуществляли в естественных условиях, фиксируя время высыхания до степени 3 (ГОСТ 19007). Через 2 суток после нанесения определяли укрывистость (ГОСТ 8784), физико-механические свойства покрытий (твердость по маятниковому прибору типа ТМЛ маятник А (ГОСТ 5233), прочность при ударе (ГОСТ 4765), адгезия (ГОСТ 15140), эластичность при изгибе (ГОСТ 6806)), через 10 суток — стойкость к статическому воздействию агрессивных сред по ГОСТ 9.403.

При диспергировании грунтовок в течение продолжительного времени не во всех случаях удалось достигнуть степени перетира 35 мкм, что, вероятно, связано с тем, что размер первичных частиц этих пигментов значительно больше, а в процессе диспергирования происходит только разрушение

агломератов, при сохранении размеров первичных частиц. Также грунтовки с пигментной частью из $CoO\cdot Al_2O_3\cdot P_2O_5$, $NiO\cdot Al_2O_3\cdot P_2O_5$, пигмента на основе фторапатита и пигмента на основе гальванического шлама OAO «Атлант» характеризуются очень плохой укрывистостью, что негативно отразилось на физико-механических характеристиках покрытий, толщина которых была значительно больше 20 мкм (наносили несколько слоев грунтовки до достижения укрывистости или приближения к этому состоянию).

Низкую твердость покрытий (0,22–0,29 отн. ед.) и недостаточные защитные свойства можно объяснить снижением скорости окислительной полимеризации в толстых покрытиях (>100 мкм, при требуемых 20 мкм), а следовательно, и снижением степени отверждения. Пониженная твердость и остаточное содержание растворителей в покрытии привело к уменьшению ударной прочности до 40–60 см (в месте удара образовывалось «смятие» покрытия).

Использование в грунтовке пигмента $CoO \cdot Al_2O_3 \cdot P_2O_5$ и $NiO \cdot Al_2O_3 \cdot P_2O_5$ привело к снижению водостойкости более чем в 5 раз по сравнению с грунтовкой базовой рецептуры, но в тоже время немного повысилась кислотостойкость особенно для покрытий на основе $CoO \cdot Al_2O_3 \cdot P_2O_5$. Повышение кислотостойкости можно объяснить высоким значением pH этих пигментов (11,3) и увеличение их количества в покрытии.

В результате исследований установлено, что из всех исследуемых синтезированных пигментов, только пигмент на основе фосфата железа и оксида использоваться в ЛКМ самостоятельно, (40:60)тэжом дополнительных промышленных пигментов и наполнителей, т.к. покрытия на его основе характеризуются хорошей укрывистостью (51,1 г/м²), высокими физико-механическими (твердость – 0,29 отн. ед.; прочность при ударе – 50 см; эластичность при изгибе – 1 мм; адгезия – 1 балл) и неплохими защитными (стойкость покрытия при $(20\pm0,2)$ °C к статическому воздействию воды -2 сут.; 0,5 % p-pa HCl – 2 сут.; 3 % p-pa NaCl – 2 сут.) свойствами. Но необходимо учесть и экономический фактор (стоимость), т. к. в грунтовках массовая доля пигментов довольно большая. Остальные пигменты, несмотря на то, что позволяют достичь хороших свойств покрытий в смеси с другими пигментами и наполнителями, самостоятельно применять нельзя из-за резкого ухудшения свойств покрытий на их основе.

СПИСОК ЛИТЕРАТУРЫ

- 1. Оценка защитных свойств покрытий наполненных глифталевых композиций электрохимическими методами / А. Л. Шутова [и др.] // Труды БГТУ. -2011. -№ 4. Химия, технология орган. вещ. и биотехнология. C. 43–49.
- 2. **Прокопчук, Н. Р**. Особенности применения новых пигментов в алкидных антикоррозионных грунтовках / Н. Р. Прокопчук, А. Л. Шутова, А. И. Глоба // Создание новых и совершенствование действующих технологий и оборудования нанесения гальванических и их замещающих покрытий: материалы 3-го респ. науч.-техн. семинара, Минск 5–6 дек. 2013 г. / БГТУ; редкол. Жарский И. М. [и др.]. Минск, 2013. С. 111–115.