Электронная библ http://e.biblio.bru.k

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Физические методы контроля»

ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ИНФОРМАЦИИ

Методические рекомендации к практическим занятиям для студентов направления подготовки 12.03.04 «Биотехнические системы и технологии» дневной формы обучения

УДК 602.62 ББК 30.16 Ф 50

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Физические методы контроля» «31» августа 2018 г., протокол № 1

Составитель ст. преподаватель Е. Н. Прокопенко

Рецензент Ю. С. Романович

Даны рекомендации по выполнению практических заданий по дисциплине «Физические основы получения информации» студентам направления подготовки 12.03.04 «Биотехнические системы и технологии» дневной формы обучения.

Учебно-методическое издание

ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУЧЕНИЯ ИНФОРМАЦИИ

Ответственный за выпуск С. С. Сергеев

Технический редактор А. А. Подошевко

Компьютерная верстка Н. П. Полевничая

/HUBEPCATET

Подписано в печать . Формат $60 \times 84/16$. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . Тираж 16 экз. Заказ №

Издатель и полиграфическое исполнение: Государственное учреждение высшего профессионального образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 24.01.2014. Пр. Мира, 43, 212000, Могилев.

© ГУ ВПО «Белорусско-Российский университет», 2018

Содержание

Введение	4
1 Подбор и расчет параметров измерительных преобразователей	5
2 Подбор компонентов и расчет характеристик информационного	
канала	9
3 Расчет параметров ультразвукового измерительного тракта	12
4 Расчет параметров электрического и магнитного измерительных	
трактов	15
5 Расчет параметров оптического измерительного тракта	17
6 Расчет параметров теплового и радиоволнового измерительных	
трактов	21
7 Расчет параметров измерительного тракта с ионизирующим	
излучением	25
Список литературы	27

Введение

Информация — понятие, включающее обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом. Получение информации (какихлибо сведений) об окружающем нас мире может происходить в результате общения с окружающими, чтения книг, приема и обработки сигналов, передаваемых по каналам связи и т. д. Основным способом получения количественной информации о том или ином объекте, системе, их состоянии и происходящих в них процессах является способ, связанный с процессом измерения.

Целью изучения дисциплины «Физические основы получения информации» является изучение физических принципов различных видов получения информации в науке и технике; основ взаимодействия физических полей с веществом; физических явлений и эффектов, используемых для получения измерительной и управляющей информации; основных фундаментальных и прикладных положений, лежащих в основе разнообразных приборов, предназначенных для получения информации об окружающем человека мире.

В данном курсе рассматриваются:

- основы взаимодействия физических полей с веществом;
- физические явления и эффекты, используемые для получения измерительной и управляющей информации: механические, электрические, магнитные, оптические, химические, ядерные и др.;
 - области применения физических явлений и эффектов в технике измерений;
- закономерности проявления физических эффектов, их техническая реализация, понятия преобразователя информации;
 - измерение физических величин различной природы.

Целью практических занятий по дисциплине «Физические основы получения информации» является постановка задач анализа измерительных трактов различной природы, решение задач информационного поиска, анализа и синтеза физических явлений и эффектов для создания средств измерения, диагностики и контроля.

1 Подбор и расчет параметров измерительных преобразователей

Основными элементами большинства применяемых средств измерений являются первичные измерительные преобразователи, назначение которых — преобразование измеряемой физической величины (входная величина) в сигнал измерительной информации (выходная величина), как правило, электрический, удобный для дальнейшей обработки.

По расположению в измерительной цепи различают первичные и промежуточные измерительные преобразователи.

Первичный измерительный преобразователь, называемый датчиком, — это тот измерительный преобразователь, на который непосредственно действует измеряемая величина.

Первичные измерительные преобразователи предназначены для измерения различных физических величин: температуры, давления, влажности, концентрации растворов и т. д. Преобразователи представляют собой весьма разнообразные устройства, которые классифицируются по измеряемой величине (преобразователи температуры, давления, уровня, плотности и т. п.), принципу действия (электрические, пневматические и т. п.), виду и характеру выходного сигнала (непрерывный и дискретный).

Остальные измерительные преобразователи называют промежуточными. Они расположены после первичного измерительного преобразователя и могут выполнять различные операции преобразования измерительного сигнала.

Как правило, к ним относятся:

- изменение физического рода величины;
- масштабное (линейное или нелинейное) преобразование;
- масштабно-временное преобразование;
- аналого-цифровое преобразование;
- цифроаналоговое преобразование;
- функциональное преобразование (любые математические операции над значениями величины).

По принципу действия первичные преобразователи можно разделить на следующие.

Емкостные преобразователи. Емкостные преобразующие элементы превращают изменения измеряемой величины в изменения емкости. Конденсатор формируется из двух пластин, разделенных слоем диэлектрика, а его емкость определяется из следующего выражения:

$$C = \varepsilon \frac{S}{r},\tag{1.1}$$

где Е – диэлектрическая проницаемость диэлектрика;

S – площадь поверхности каждой пластины;

x — расстояние между пластинами.

Пьезоэлектрические преобразователи. Одним из емкостных типов преобразования является пьезоэлектрический эффект, при котором изменение измеряемой величины преобразуется в изменение электростатического заряда или напряжения, возникающих в некоторых материалах при их механическом напряжении. Напряжение обычно образуется под действием сил сжатия, растяжения или изгиба, которые являются измеряемой величиной и воздействуют на чувствительный элемент либо непосредственно, либо с помощью некоторой механической связи. Чтобы воспринять изменение электрического заряда или напряжения, к пьезоэлектрическому материалу подсоединяют две металлические пластинки, которые фактически образуют пластины конденсатора.

Электромагнитные преобразователи. В этих датчиках используется свойство катушки индуктивности изменять свое сопротивление при перемещении сердечника.

Фотоэлектрические преобразователи. Их действие основано на использовании воздействия изменений измеряемого параметра на интенсивность светового излучения. Источником светового излучения обычно являются лампы накаливания, рентгеновские трубки и радиоактивные вещества. Приемники излучения – фотоэлементы, ионизационные камеры, газоразрядные счетчики.

Преобразователи сопротивления. Они представляют собой резистивные преобразователи, действие которых основано на изменении сопротивления материала датчика в зависимости от измеряемых свойств среды. Изменение сопротивления может быть вызвано различными эффектами в преобразующем элементе, например, нагреванием или охлаждением, механическим напряжением, воздействием светового потока, увлажнением, осущением, перемещением контактной щетки реостата.

Термоэлектрические преобразователи. Термоэлектрические преобразователи превращают изменение измеряемой величина (температуры) в изменение тока, возникающего вследствие разности температуры на спае двух разнородных материалов, в котором возникает эффект Зеебека (рисунок 1.1).

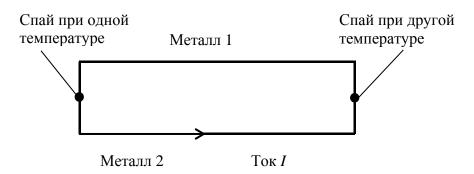


Рисунок 1.1 – Эффект Зеебека

Ионизационные преобразователи. Действие данных преобразователей основано на изменении измеряемой величины в изменение тока ионизации, который протекает, например, через жидкость, расположенную между двумя электродами (рН-метры).

Основные характеристики измерительных преобразователей. Функция преобразования измерительного преобразователя – это функциональная зависимость выходной величины от входной, описываемая аналитическим выражением или графиком. Чаще всего стремятся иметь линейную характеристику преобразования, т. е. прямую пропорциональность между изменением входной величины и соответствующим приращением выходной величины преобразователя.

Для описания линейной характеристики преобразования $\alpha = \varphi(x) = \alpha_0 + S\Delta X$ достаточно двух параметров: начального значения выходной величины α₀ (нулевого уровня), соответствующего нулевому (или какому-либо другому характерному) значению входной величины x, и показателя относительного наклона характеристики $S = \Delta \alpha / \Delta x$, называемого чувствительностью преобразователя.

Чувствительность преобразователя – это, как правило, именованная величина с разнообразными единицами, зависящими от природы входной и выходной величин.

Общие требования к первичным измерительным преобразователям обусловлены:

- характером измеряемой величины;
- методикой измерений;
- условиями решаемой задачи (необходимостью измерять несколько параметров одновременно, скоростью преобразования);
 - влиянием исследуемой среды (давление, температура, химическая агрессия).

Выделяют три группы основных требований: метрологические, эксплуатационные и конструктивные.

Метрологические требования:

- чувствительность и точность;
- быстродействие, пространственное разрешение, соответствие масштабу исследуемого процесса;
 - минимальное возмущение полей измеряемых величин;
 - малая чувствительность к неинформативным воздействиям.

Эксплуатационные требования:

- надежность и срок службы;
- устойчивость к перегрузкам, температуре, химическим, биологическим, механическим воздействиям;
 - удобство обслуживания и метрологической аттестации.

Конструктивные требования:

- унифицированность и взаимозаменяемость;
- малая масса и габаритные размеры;
- технологичность и экономичность изготовления.

Индивидуальное задание

Ознакомиться с основными характеристиками и требованиями, предъявляемыми к первичным измерительным преобразователям. Решить следующие задачи.

1 Отрезок проволоки длиной l=1 м и диаметром d=0,1 мм имеет электрическое сопротивление R = 51 Ом. Из какого материала сделана проволока и к

какому виду преобразователей можно отнести данный элементарный преобразователь?

- 2 Для определения емкостей конденсаторов C_1 и C_2 они были включены последовательно, потом – параллельно. При последовательном включении был получен результат $C_{noc} = 2$ мк Φ , при параллельном – $C_{nap} = 8$ мк Φ . Чему равны емкости конденсаторов C_1 и C_2 и к какому виду преобразователей можно отнести данный преобразователь?
- 3 Для определения сопротивлений R_1 и R_2 измерили сопротивление при их последовательном $R_{noc} = 10$ кОм и при параллельном $R_{nap} = 2,5$ кОм включении. Чему равны сопротивления R_1 и R_2 и к какому виду относятся эти измерения?
- 4 При нагревании сопротивление металлического резистора определяется соотношением $R_{\Theta} = R_0 (1 + \alpha \Theta)$, где R_0 – сопротивление при 0 °C, α – температурный коэффициент сопротивления. Сопротивление резистора было измерено при двух температурах: Θ_1, Θ_2 – и получены значения сопротивлений резистора R_{Θ_1} , R_{Θ_2} . Определите параметры резистора R_0 и α , установите материал, из которого изготовлен резистор, постройте функцию преобразования, определите чувствительность.
- 5 ТермоЭДС, возникающая в спае медь-свинец, определяется соотношением $e = A\Theta + B\Theta^2$, где Θ – температура нагретого спая (свободные концы находятся при температуре 0 °C). Для определения коэффициентов A и B были измерены термо ЭДС при двух температурах: Θ_1 , Θ_2 – и получены значения e_1 , e_2 . Чему равны коэффициенты А и В? Постройте функцию преобразования, определите чувствительность.

Контрольные вопросы

- 1 Что такое измерительный преобразователь?
- 2 Как классифицируются измерительные преобразователи?
- 3 Какие преобразователи относятся к первичным?
- 4 Какие преобразователи относятся к преобразователям электрических величин в электрические?
 - 5 Какие преобразователи относятся к масштабным преобразователям?
 - 6 Назовите основные характеристики измерительных преобразователей.
 - 7 Что понимают под понятием «порог чувствительности»?
 - 8 Что представляет собой градировочная характеристика?

2 Подбор компонентов и расчет характеристик информационного канала

Информационным называется процесс, возникающий в результате установления связи между двумя объектами материального мира.

Один из объектов называют генератором сообщений или источником информации, другой – получателем или приемником информации.

Понятие **информации** имеет много определений, от наиболее широкого (информация есть формализованное отражение реального мира) до практического (сведения и данные, являющиеся объектом хранения, передачи, преобразования, восприятия и управления). В настоящее время мировая наука все больше склоняется к точке зрения, что информация, наряду с материей и энергией, принадлежит к фундаментальным философским категориям естествознания и относится к одному из свойств объективного мира, хотя и несколько специфичному. Что касается «данных» (от лат. datum — факт), то это совокупность фактов, результатов наблюдений, измерений о каких-либо объектах, явлениях или процессах материального мира, представленных в формализованном виде, количественном или качественном. Это не информация, а только атрибут информации — сырье для получения информации путем соответствующей обработки и интерпретации (истолкования).

Материальная среда, которая обеспечивает взаимодействие между источником информации и приемником, называется каналом связи. Передача информации осуществляется через канал связи.

Общими элементами большинства каналов связи систем обработки данных являются (рисунок 2.1):

- источник информации –1;
- кодирующее устройство -2;
- передатчик 3;
- приемник информации 4;
- устройство хранения и обработки информации 5;
- − устройство отображения информации − 6.

Также в канале связи может действовать источник nomex - 7.

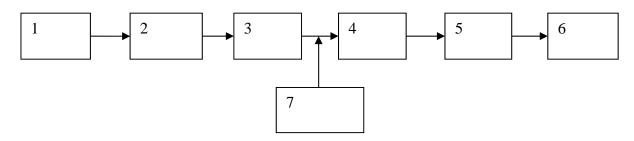


Рисунок 2.1 – Структурная схема устройства обработки информации

В зависимости от среды передачи данных информационные каналы разделяются на следующие:

– проводные (воздушные);

HABEPCATE!

- кабельные (медные и волоконно-оптические);
- радиоканалы наземной и спутниковой связи.

К основным характеристикам информационных каналов относятся:

- амплитудно-частотная характеристика;
- полоса пропускания;
- затухание;
- помехоустойчивость;
- пропускная способность;
- достоверность передачи данных.

В первую очередь разработчика информационного канала интересуют пропускная способность и достоверность передачи данных, поскольку эти характеристики прямо влияют на производительность и надежность создаваемого канала. Пропускная способность и достоверность — это характеристики как канала передачи, так и способа передачи данных.

Амплитудно-частотная характеристика показывает, как затухает амплитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой характеристике часто используют также такой параметр сигнала, как его мощность.

Полоса пропускания (bandwidth) – это непрерывный диапазон частот, для которого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5.

Затухание (attenuation) определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по линии сигнала определенной частоты.

Пропускная способность (throughput) характеризует максимально возможную скорость передачи данных по линии связи. Пропускная способность измеряется в битах в секунду, а также в производных единицах, таких как килобит в секунду, мегабит в секунду, гигабит в секунду и т. д.

Информационный канал можно характеризовать также тремя соответствующими параметрами: временем использования канала T_k , шириной полосы частот, пропускаемых каналом F_k , и динамическим диапазоном канала D_k , характеризующим его способность передавать различные уровни сигнала.

Величина $V_k = T_k F_k D_k$ называется емкостью канала.

Неискаженная передача сигналов возможна только при условии, что сигнал по своему объему «вмещается» в емкость канала.

Следовательно, общее условие согласования сигнала с каналом передачи информации определяется соотношением $V_C \leq V_k$.

Однако соотношение выражает необходимое, но недостаточное условие согласования сигнала с каналом. Достаточным условием является согласование по всем параметрам: $T_C \le T_k$; $F_C \le F_k$; $D_C \le D_k$.

Для информационного канала пользуются понятиями: скорость ввода информации, скорость передачи информации и пропускная способность канала.

Под скоростью ввода информации (потоком информации) I(X) понимают

Электр http://e среднее количество информации, вводимое от источника сообщений в информационный канал в единицу времени. Эта характеристика источника сообщений и определяется только статистическими свойствами сообщений.

Скорость передачи информации I(Z, Y) — среднее количество информации, передаваемое по каналу в единицу времени. Она зависит от статистических свойств передаваемого сигнала и от свойств канала.

Пропускная способность C — наибольшая теоретически достижимая для данного канала скорость передачи информации. Это характеристика канала и не зависит от статистики сигнала.

С целью наиболее эффективного использования информационного канала необходимо принимать меры к тому, чтобы скорость передачи информации была как можно ближе к пропускной способности канала. Вместе с тем скорость ввода информации не должна превышать пропускную способность канала, иначе не вся информация будет передана по каналу.

Это основное условие динамического согласования источника сообщений и информационного канала.

Индивидуальное задание

Ознакомиться с основными характеристиками каналов связи, решить следующие задачи.

1 Производится стрельба по двум мишеням: по первой мишени сделано два выстрела (событие A), по второй – три (событие B). Вероятность попадания при одном выстреле равна, соответственно, 1/2 и 1/3. В каком соотношении находятся количества информации об этих событиях?

Yказание — Вероятность попадания в мишень подчинена биномиальному закону распределения $P(X=m) = C_n^m p^m (1-p)^{n-m}$.

- 2 Вероятность появления события при одном испытании равна p, вероятность непоявления события q=1-p. При каком p количество информации о событии будет наибольшим?
- 3 Определите максимальное количество информации в сообщении, состоящем из трех пятибуквенных слов, причем общее число букв в алфавите равно 32.
- 4 Спектр частот сигнала определяется полосой 1 МГц. Время, необходимое для передачи сигнала, составляет 1 мкс. Мощность сигнала превышает мощность помехи в 16 раз.

Определите объем передаваемого сигнала. Может ли данный сигнал быть передан по каналу со следующими характеристиками:

- время использования 1 мкс; 1 мкс;
- полоса частот 1 МГц; 2 МГц;
- максимальное соотношение сигнал–шум 32; 8?
- 5 Найдите спектр частот сигнала, обеспечивающий его передачу со скоростью 10³ бит/с по каналу с максимальным соотношением сигнал—шум, равным 1023.
- 6 Какое минимальное время передачи сигнала должно быть обеспечено для получения 100 бит информации, если спектр его частот 10000 Гц, а соотношение

- 7 Для передачи восьми равновероятных сообщений используется двоичный код. Длительности кодовых символов одинаковы. Найдите скорость передачи сообщений, если длительность каждого символа равна 10-6 с.
- 8 Определите пропускную способность канала передачи данных, если для передачи используется код с основанием m (т. е. m различных символов). Длительность всех символов одинакова и равна т, а по каналу передается сообщение из M символов, которые имеют одинаковые вероятности.
- 9 Пропускная способность канала связи 100 Мбит/с. Канал не подвержен воздействию шума (например, оптоволоконная линия). Определите, за какое время по каналу будет передан текст, информационный объем которого составляет 100 Кбайт.
- 10 Алфавит состоит из букв A, B, C, D. Вероятности появления букв равны соответственно $p_A = p_B = 0.25$; $p_C = 0.34$; $p_D = 0.16$. Определите количество информации на символ сообщения, составленного из такого алфавита.
- 11 Буквы русского алфавита передаются при помощи четырехчастотных кодов. Длительность кода буквы равна 0,1 с. Определите скорость передачи информации и скорость передачи сигналов.
- 12 Число символов алфавита m = 4. Вероятности появления символов равны соответственно $p_1=0.15;\ p_2=0.4;\ p_3=0.25;\ p_4=0.2.$ Длительности символов $\tau_1 = 3$ с; $\tau_2 = 2$ с; $\tau_3 = 5$ с; $\tau_4 = 6$ с. Чему равна скорость передачи сообщений, составленных из таких символов?

Контрольные вопросы

- 1 Дайте определение понятий «информация», «информационный канал».
- 2 Из каких элементов состоит канал связи?
- 3 Какими величинами можно охарактеризовать канал связи?
- 4 Назовите основное условие согласования канала связи и сигнала.
- 5 Что такое пропускная способность канала связи?
- 6 Как определить количество информации в сообщении?
- 7 В каких единицах измеряется информация?

3 Расчет параметров ультразвукового измерительного тракта

Упругость – свойство твердых тел восстанавливать свои форму и объем, а жидкостей и газов – объем после прекращения действия внешних сил. Среду, обладающую упругостью, называют упругой средой.

Упругие колебания – это колебания механических систем, упругой среды или ее части, возникающие под действием механического возмущения. Упругие, или акустические, волны - механические возмущения, распространяющиеся в упругой среде. Частный случай акустических волн – слышимый человеком звук. Отсюда происходит термин акустика (от греч. akustikos – слуховой) – область

физики, исследующая упругие колебания и волны от самых низких до самых высоких частот и в том числе слышимых человеком.

Энергия акустической (звуковой) волны – добавочная энергия, обусловленная наличием этой волны. Энергия акустической волны в единице объема среды называется плотностью звуковой энергии. Она состоит из кинетической и потенциальной частей. Для плоской бегущей звуковой волны кинетическая и потенциальная части энергии равны и плотность полной энергии, выраженная через амплитуду давления P,

$$E = P^2 / (\rho c^2),$$
 (3.1)

где ρ – плотность среды.

Интенсивность (сила) звука J – средняя по времени энергия, переносимая звуковой волной через единичную площадку, перпендикулярную к направлению распространения волны, за единицу времени. Для периодической звуковой волны усреднение проводится либо за промежуток времени, намного больший по сравнению с периодом, либо за целое число периодов.

Для плоской синусоидальной бегущей волны интенсивность, выраженная через амплитуды давления P и смещения U,

$$J = P^{2} / (2\rho c) - 0.5\rho c\omega^{2} U^{2}. \tag{3.2}$$

Интенсивность используемых волн обычно весьма мала: <10⁻⁵ Bт/м² в месте излучения ультразвука.

В ультразвуковом методе получения информации обычно измеряют ослабление амплитуды A' относительно амплитуды возбужденных в объекте колебаний A_0 . Для этого применяют логарифмические единицы – децибелы.

$$(A'/A_0) = 20\lg(A'/A_0) = 10\lg(J'/J_0). (3.3)$$

Поскольку $A' < A_0$, децибелы будут отрицательными, однако в ультразвуковой дефектоскопии знак «-» принято опускать. На рисунке 3.1 приведены шкалы перевода относительных единиц в положительные и отрицательные децибелы.

Рисунок 3.1 – Шкалы перевода относительных величин в децибелы. Попарно используют шкалы І-І', ІІ-ІІ', ІІІ-ІІІ'

Отражение ультразвуковых волн на границе раздела сред зависит от соотношения волнового сопротивления сред.

Волновое сопротивление является характеристикой среды, определяющей условие отражения и преломления волн на границе сред. Волновое сопротивление среды равно произведению плотности среды ρ и скорости C распространения ультразвуковой волны:

$$Z = \rho \cdot C . \tag{3.4}$$

Индивидуальное задание

Ознакомиться с основными параметрами ультразвукового измерительного тракта. Решить следующие задачи.

- 1 Эхо, вызванное ружейным выстрелом, дошло до стрелки через 2 с после выстрела. На каком расстоянии находится преграда, от которой отразился звук (скорость звука в воздухе 340 м/с)?
- 2 Волна распространяется по поверхности воды со скоростью 10 м/с. Расстояние между соседними «гребнями» волн составляет 5 м. С какой частотой колеблются частицы?
- 3 При переходе из одной среды в другую скорость звуковой волны уменьшилась на 30 %. Как изменится при этом длина волны?
- 4 Сигнальщик услышал звуковой сигнал через 4 с после начала работы сирены. На каком расстоянии от источника находится сигнальный пост, если частота звукового сигнала равна 1 кГц, а длина волны составляет 32 см?
- 5 Мимо неподвижного наблюдателя проехал автомобиль с включенной сиреной. При приближении автомобиля наблюдатель слышал более высокий тон звука, а при удалении – более низкий. Какой эффект будет наблюдаться, если сирена будет неподвижной, а мимо нее проедет наблюдатель?
- 6 Определите плотность потока энергии, распространяющейся в воде акустической волны, имеющей цилиндрический фронт, на расстоянии $r_2 = 80\,$ см от оси излучателя, если известно, что коэффициент затухания ультразвука в воде на излучателя $\delta = 10,6 \text{ м}^{-1}$, а плотность потока энергии на расстоянии $r_1 = 20$ см от оси излучателя составляет $q_1' = 2 \cdot 10^{-6}$ Вт/м². Определите результирующий коэффициент ослабления интенсивности волны при преодолении расстояния от r_1 до r_2 вследствие проявления эффектов расширения фронта и затухания в среде.

7 Рассчитайте значение первого критического угла при падении продольной акустической волны на плоскую границу раздела вода – твердое тело, если известно, что плотность материала твердого тела $\rho = 4,3 \cdot 10^3$ кг/м³, модуль упругости $E = 100 \cdot 10^9$ Па, коэффициент Пуассона $\mu = 0.33$.

8 Определите длину волны звука в слышимой области на частоте 1,5 кГц, распространяющуюся в воде со скоростью 1483 м/с и в воздухе со скоростью 343,1 м/с (при температуре 20 °C). Определите, в какой среде длина волны Зависит ли скорость распространения звуковой звука больше? от ее частоты?

9 Определите коэффициент проникновения на границе раздела воздух – кожа. Скорость распространения УЗ-волны в воздухе равна 343,1 м/с, в коже – 1610 м/c; плотность воздуха — $1,205 \text{ кг/м}^3$, плотность кожи — 1250 кг/м^3 .

Контрольные вопросы

- 1 Колебания каких частот относятся к ультразвуковым?
- 2 Какие волны могут распространяться в жидких и твердых средах?
- 3 Назовите основные упругие постоянные, от которых зависит скорость распространения ультразвуковых волн в твердых средах.
 - 4 Какой закон связывает углы падения и преломления акустических волн?
 - 5 В чем заключается эффект Доплера?
 - 6 Как определяются коэффициенты поглощения и отражения?

Расчет параметров электрического И магнитного измерительных трактов

Электрические методы получения информации основаны на физических эффектах, результатом которых является преобразование в электрический сигнал характеристик электрических полей или электрических характеристик материалов и изделий. Обычно при данном виде измерительных преобразований объект измерения или его часть помещается в постоянное или переменное электрическое поле, создаваемое между электродами, контактирующими с электропроводящим объектом измерения либо между обкладками электрического.

Среди электрических методов выделяют:

- емкостные методы;
- электропотенциальные методы;
- тензорезистивные методы;
- методы, основанные на использовании пьезоэффекта и пироэффекта.

Магнитные методы получения информации основаны на физических эффектах, результатом которых является преобразование в электрический сигнал характеристик магнитных полей или магнитных характеристик материалов и изделий. Обычно при данном виде получения информации объект измерения или его часть помещается в постоянное или переменное магнитное поле, создаваемое за счет протекания электрического тока по проводнику, обмотке или непосредственно по объекту, а также постоянными магнитами.

Среди магнитных методов получения информации выделяют:

- индукционные методы;
- магнитомодуляционные методы;
- гальваномагнитные методы.

Индивидуальное задание

Ознакомиться с основными методами получения информации с помощью электрических и магнитных методов. Решить следующие задачи.

1 Определите разность потенциалов между точками 1 и 2 в однородном электрическом поле напряженностью E=1 В /м при расстоянии между точками l=5 см и расстоянии между проходящими через эти точки силовыми линиями a=3 см (рисунок 4.1).

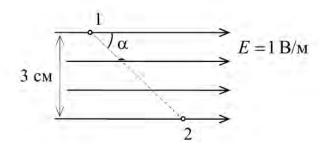


Рисунок 4.1 – Две точки в однородном электрическом поле

- 2 Определите точку кривой первоначального намагничивания B(H), для которой имеет место равенство значений относительных нормальной μ_r и дифференциальной μ_d магнитных проницаемостей.
- 3 Определите мгновенное значение ЭДС e в момент времени t=0, 2 с, наводимой в контуре прямоугольной формы с размерами 4×6 см, находящемся в однородном магнитном поле, силовые линии которого составляют с плоскостью контура угол $\beta=30^\circ$, а индукция изменяется во времени по закону $B(t)=B_m-e^t=0,1-e^t$.
- 4 Для электроемкостного измерительного преобразователя, имеющего цилиндрические обкладки с внутренним диаметром D=30 мм и длиной l=60 мм, постройте график зависимости емкости C от диаметра d металлического прутка.
- 5 Для индукционного измерительного преобразователя с числом витков w=1500 и площадью среднего витка S=600 мм² определите зависимость от времени e(t) ЭДС, возникающей при равномерном повороте преобразователя за время T=0.1 с в однородном постоянном магнитном поле с напряженностью 500 А/м из положения, при котором угол α между нормалью и силовыми линиями поля (рисунок 4.2) $\alpha_1=-45^\circ$, в положение, при котором угол $\alpha_2=45^\circ$. Определите значение ЭДС в момент времени t=0.05 с.

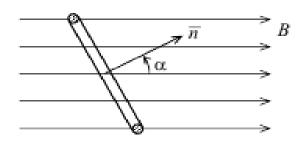


Рисунок 4.2 – Индукционный измерительный преобразователь в магнитном поле

Контрольные вопросы

- 1 Какие физические закономерности положены в основу электрических методов получения информации?
- 2 Какие физические закономерности положены в основу магнитных методов получения информации?
- 3 Какие первичные преобразователи используются при получении информации электрическими методами?
- 4 Какие первичные преобразователи используются при получении информации магнитными методами?
 - 5 Что такое пьезоэффект?
- 6 Для измерения каких величин используются магнитные первичные преобразователи?

5 Расчет параметров оптического измерительного тракта

Оптические методы получения информации основаны на зависимости параметров потока оптического излучения от параметров источника излучения и среды распространения.

Оптическое или световое излучение представляет собой электромагнитные волны, длина которых лежит в диапазоне $10^{-3}...10^3$ мкм. Диапазон радиоволн частично перекрывает оптический в интервале длин волн 50...103 мкм, а диапазон ионизирующих излучений — в интервале длин волн $10^{-3}...10^{-2}$ мкм.

В оптическом диапазоне различают три поддиапазона: инфракрасная (0,78...103 мкм), видимая (0,38...0,78 мкм) и ультрафиолетовая $(10^{-3}...0,38 \text{ мкм})$ области спектра.

Электромагнитные волны оптического диапазона, как и любые электромагнитные волны, являются волнами поперечными и характеризуются взаимно перпендикулярными векторами \vec{E} и \vec{H} напряженностей электрического и магнитного полей, которые изменяются синхронно в плоскости, перпендикулярной к направлению распространения волн.

Среда, отличающаяся от вакуума по электромагнитным свойствам, уменьшает скорость распространения световой волны, а отношение скоростей электромагнитной волны в вакууме и в среде n=c/v называется показателем преломления.

Оптическое излучение, имея волновую природу, обладает следующими свойствами: поляризации, интерференции, дифракции, отражения, преломления и другими.

Оптические преобразователи находят все более широкое применение благодаря своим некоторым отличительным особенностям, главные из которых — бесконтактность, помехоустойчивость, высокое быстродействие, а в ряде случаев невозможность использования других преобразователей.

Основными при расчете оптической системы преобразователя являются геометрический расчет оптической системы и энергетический расчет.

Геометрический расчет оптической системы. Оптическая система прибора может иметь один, два или более компонентов.

Оптическая система с одним компонентом является наиболее простой по своей реализации.

На рисунке 5.1 изображена оптическая схема с одним оптическим элементом, где введены следующие обозначения: a, b — линейные размеры излучающей поверхности; e, h — линейные размеры приемника; l — расстояние между объективом и источником излучения; l^1 — расстояние между объективом и приемником.

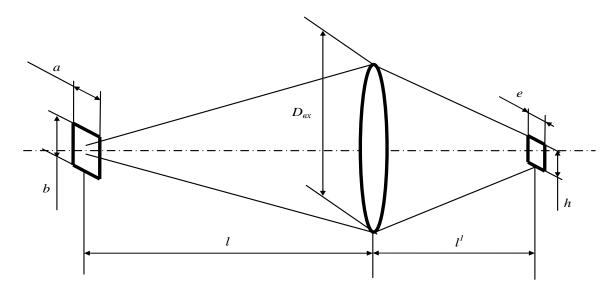


Рисунок 5.1 – Оптическая схема с одним компонентом

Размеры изображения излучающей поверхности обозначим a^1 и b^1 . Уместим изображение излучателя в пределах поверхности приемника, т. е. положим, что $a^1 < e, b^1 < h$.

Линейное увеличение

$$\beta = \frac{a^1}{a} = \frac{l^1}{l}.\tag{5.1}$$

Подставляя $a^1 < e$, получим расстояние до приемника

$$l^1 \le \frac{el}{a} \,. \tag{5.2}$$

Расстояние l может быть задано исходя из назначения и применения прибора. Тогда положение приемника определяется из (5.2).

Фокусное расстояние объектива

$$f = \frac{l \cdot l^1}{l + l^1}.\tag{5.3}$$

При очень большом расстоянии l до излучателя приемник располагается в

фокальной плоскости объектива, как следует из (5.3).

Диаметр входного отверстия D_{ex} находится из формулы

$$D_{ex} = 2l\sqrt{\frac{\Phi_{\min}}{\tau \cdot \pi \cdot L_e \cdot S_{usn}}},$$
(5.4)

где Φ_{\min} – минимальное значение потока на поверхности фотоприемника, лм;

т – коэффициент пропускания оптической системы;

 L_e – энергетическая яркость, $B \cdot cp^{-1} M^{-2}$; $\Phi_0 = \pi \cdot L_e \cdot S_{ux}$;

 $S_{u_{3n}}$ – площадь излучающей поверхности, м².

Или по формуле

$$D_{ex} = \sqrt{\frac{\Phi_{\min}}{\tau \cdot \pi \cdot E_e}} = 2l \sqrt{\frac{\Phi_{\min}}{2 \cdot \pi \cdot \tau \cdot I_e}}.$$
 (5.5)

Размеры l и $D_{\it ex}$ определяют продольные и поперечные размеры оптической системы.

При отдаленном источнике светочувствительная поверхность приемника располагается в фокальной плоскости объектива. Если наибольший угловой размер источника излучения равен 2γ , то линейный размер изображения источника излучения

$$a^1 = 2f^1 \cdot \mathsf{tg}\gamma \,. \tag{5.6}$$

Чтобы изображение уместилось на светочувствительной поверхности фотоприемника, необходимо иметь $a^1 < e$.

Откуда фокусное расстояние

$$f^1 = l^1 = \frac{e}{2\operatorname{tg}\gamma} \,. \tag{5.7}$$

Индивидуальное задание

Ознакомиться с методикой расчета оптического измерительного тракта. Решить следующие задачи.

1 Полный световой поток точечного источника света $\sum q = 1$ Вт. Определите энергетические силу света I, освещенность G концентрической источнику сферической поверхности, удаленной на расстояние r = 1 м от источника, и световой поток q, падающий на участок этой поверхности площадью S = 100 мм².

2 Световые волны от двух точечных когерентных источников, расположенных в плоскости L с длиной волны $\lambda=0,5\,$ мкм, падают на экран, плоскость которого перпендикулярна плоскости L и ориентирована таким образом, что источники света равноудалены от экрана. Определите ширину интерференционных

полос Δ на линии пересечения экрана плоскостью L. Геометрические размеры приведены на рисунке 5.2.

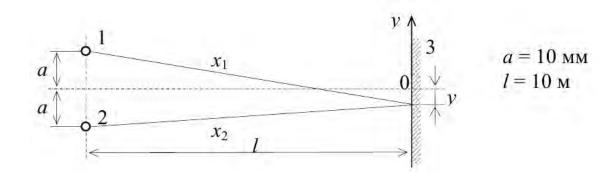


Рисунок 5.2 – Исходные данные к задаче

- 3 Определите допустимый минимальный радиус изгиба оптического волновода, представляющего собой гибкий двухслойный цилиндр с радиусом внутреннего слоя $r_1 = 1$ мм и наружного $r_2 = 1,2$ мм . Значения относительных диэлектрических проницаемостей диэлектриков $\varepsilon_{r1} = 4$ и $\varepsilon_{r2} = 2$.
- 4 Под каким углом световой луч падает на плоскую поверхность стекла, если отраженный и преломленный лучи образуют между собой угол 90°?
- 5 Проведите расчет оптической системы с одним компонентом по исходным данным, заданным преподавателем.

Контрольные вопросы

- 1 Какие виды излучения входят в состав оптического излучения?
- 2 Какими длинами волн характеризуется видимое излучение?
- 3 Что такое угол Брюстера?
- 4 Что гласит принцип Гюйгенса?
- 5 Что происходит со световым пучком при двойном лучепреломлении?
- 6 Что такое полное внутреннее отражение?
- 7 Что такое групповая скорость распространения электромагнитных волн в среде?
 - 8 Чему равен абсолютный показатель преломления среды n?

6 Расчет параметров теплового и радиоволнового измерительных трактов

Электромагнитная волна представляет собой совокупность быстропеременных электрического E и магнитного H полей, распространяющихся в определенном направлении z. В свободном пространстве электромагнитная волна поперечна, T. е. векторы \vec{E} и \vec{H} перпендикулярны направлению распространения волны z (продольная волна отсутствует).

Модули векторов \vec{E} и \vec{H} софазны, т. е. они одновременно в одних и тех же точках пространства достигают максимального или минимального значения. Указанные свойства электромагнитных волн вытекают из анализа описывающих взаимосвязь электрического и магнитного полей уравнений Максвелла в дифференциальной форме. Процесс распространения электромагнитных волн обеспечивается тем, что изменяющееся электрическое поле порождает вихревое магнитное поле, которое, в свою очередь, порождает вихревое электрическое поле:

$$rot\vec{H} = \varepsilon_0 \frac{\partial \vec{E}}{\partial t}; \quad rot\vec{E} = -\mu_0 \frac{\partial \vec{H}}{\partial t}.$$
 (6.1)

Данный процесс можно инициировать при условии наличия излучателя электрического либо магнитного полей, обеспечивающего возбуждение соответствующего поля в области пространства, протяженность которого соизмерима с длиной волны.

Плотность потока энергии электромагнитной волны q' — энергия, переносимая волной в единицу времени через единицу поверхности малой площадки dS, имеет размерность ватт на метр квадратный и описывается уравнением

$$q' = EH \cos \varphi \cos \alpha, \tag{6.2}$$

где E и H — амплитудные значения напряженности электрического и магнитного полей:

 ϕ – разность фаз колебаний векторов \vec{E} и \vec{H} ;

 α — угол между направлением распространения волны Z и нормалью к площадке.

Поток энергии электромагнитной волны q — энергия, переносимая волной в единицу времени через площадь S. Размерность — ватт, определяется интегрированием q' по площади S:

$$q = \iint_{S} EH \cos \varphi \cos \alpha dS; \quad q' = \frac{dq}{dS}. \tag{6.3}$$

Показатель преломления – отношение скоростей электромагнитной волны в вакууме и в среде:

$$n = \frac{c}{v} \,. \tag{6.4}$$

Закон распространения монохроматической электромагнитной волны для самого общего случая, когда среда характеризуется отличными от вакуума электрической проводимостью, диэлектрической и магнитной проницаемостями, записывается следующим образом:

$$E(t) = E_{m0} \exp\left(-\frac{\omega \chi}{c}z\right) \sin\left(\omega t - \frac{n}{c}z\right), \tag{6.5}$$

где E(t) — мгновенное значение напряженности электрического поля в точке пространства, отстоящей от начала координат в направлении распространения волны на расстояние z;

 E_{m0} — амплитуда напряженности электрического поля в начале координат;

ω – круговая частота электромагнитного поля;

 χ — коэффициент поглощения среды, характеризующий уменьшение амплитуды колебаний вследствие возникновения вихревых токов в электропроводящей среде.

В идеальном диэлектрике, удельная электрическая проводимость материала которого $\sigma \to 0$ и, следовательно, отсутствует поглощение, имеет вид:

$$E(t) = E_{m0} \sin\left(\omega t - \frac{n}{c}z\right). \tag{6.6}$$

Основным уравнением измерительных преобразований в тепловых полях является уравнение теплового баланса, согласно которому подводимое к объекту количество теплоты $Q_{\it вн}$ равно сумме количества теплоты $Q_{\it p}$, отдаваемой им в среду, и количества теплоты $Q_{\it c}$, идущей на изменение его температуры:

$$Q_{\scriptscriptstyle GH} = Q_{\scriptscriptstyle p} + Q_{\scriptscriptstyle c} \ . \tag{6.7}$$

Для характеристики теплообмена часто используются величины теплового потока q и удельного теплового потока q'.

Тепловой поток – количество теплоты, переданное через изотермическую (одинаковой температуры) поверхность в единицу времени.

Vдельный тепловой поток (плотность теплового потока) — тепловой поток через единицу поверхности.

Единицами измерения теплового и удельного теплового потоков являются соответственно ватт и ватт на квадратный метр. Связь этих величин определяется выражениями

$$q = \iint_{S} q'dS; \quad q' = \frac{dq}{dS}, \tag{6.8}$$

где S – площадь поверхности, через которую определяется тепловой поток.

Уравнение теплового баланса для тепловых потоков

$$q_{\rm\scriptscriptstyle GH} = q_{\rm\scriptscriptstyle p} + q_{\rm\scriptscriptstyle C} \,, \tag{6.9}$$

где $q_{\it вн}$ — подводимый к объекту (вносимый) тепловой поток;

 $q_{\scriptscriptstyle p}$ – полный тепловой поток теплоотдачи (рассеивания);

 q_c — тепловой поток изменения внутренней энергии (температуры тела).

Тепловая энергия может передаваться от объекта объекту тремя способами: теплопроводностью, конвекцией и излучением.

Для измерения температуры применяют приборы – термометры, которые можно разделить на контактные и бесконтактные.

В механических контактных термометрах реализуется термомеханический эффект.

Процесс теплового расширения веществ описывается уравнением

$$L_2 = L_1 (1 + \alpha (T_2 - T_1))$$
 или $\Delta L = L_2 - L_1 = L_1 \alpha \Delta T$,

где L_1 и L_2 – размеры нагреваемого тела при температурах T_1 и T_2 ;

α – коэффициент теплового расширения.

Жидкостные стеклянные термометры. Основным элементом жидкостных стеклянных термометров является стеклянный баллон с капилляром, заполненным термометрической жидкостью. Возможность измерения температуры вытекает из различия в коэффициентах объемного расширения стеклянного баллона с капилляром и термометрической жидкостью.

В основном применяются следующие разновидности термоэлектрических датчиков:

- металлические термометры сопротивления (ТС);
- термоэлектрические преобразователи (ТП) термопары;
- полупроводниковые термометры сопротивления (термисторы);
- полупроводниковые интегральные сенсоры (датчики);
- пьезоэлектрические (кварцевые) преобразователи с частотным в ыходным сигналом.

Термометры сопротивления. Приборы и преобразователи на основе металлических TC используют зависимость электрического сопротивления металлов R_T от температуры T.

Индивидуальное задание

Ознакомиться с основными особенностями радиоволновых и тепловых методов получения информации. Решить следующие задачи.

- 1 Определите степень изменения амплитуды напряженности электрического поля линейно поляризованной электромагнитной волны, распространяющейся в воздушной среде при прохождении через диэлектрическую пластину с относительной диэлектрической проницаемостью материала $\varepsilon_r=3$ и коэффициентом поглощения $\chi\approx 0$, в случае, если плоскость поляризации волны параллельна плоскости падения на границу раздела воздух—диэлектрик, а угол падения $\alpha=30^\circ$. Определите значения угла Брюстера на границах раздела воздух—диэлектрик и диэлектрик—воздух. Определите значение критического угла на границе раздела диэлектрик—воздух.
- 2 Определите температуры двух точек поверхности титанового стержня сечением $S=25~{\rm mm}^2$, отстоящих друг от друга на расстоянии $l=80~{\rm mm}$, если известно, что температура точки поверхности стержня, находящейся посредине между этими точками, $\theta_0=100~{\rm ^{\circ}C}$, а тепловой поток теплопроводности $q=1~{\rm Bt}$. При решении задачи примите, что теплообмен носит установившийся характер и прочие тепловые потоки, кроме потока теплопроводности, отсутствуют, а коэффициент теплопроводности титана на рассматриваемом участке стержня при заданной температуре $\lambda=21,9~{\rm Bt}~({\rm m\cdot K})$.
- 3 Определите постоянную времени τ изменения температуры теплового преобразователя, помещенного в исследуемую среду, если известно, что его начальная температура составляла $\theta_0 = 20$ °C, а температуры в моменты времени $t_1 = 1$ с и $t_2 = 2$ с после начала переходного температурного процесса $\theta_1 = 43.8$ °C и $\theta_2 = 65.3$ °C.
- 4 Оцените нелинейность функции преобразования температуры θ в электрическую проводимость γ полупроводникового резистора в диапазоне изменения температуры от θ_1 =20 °C до θ_2 = 100 °C. Характеристики резистора: при θ_0 = 0 °C сопротивление R_0 = 2,5 K; температурный коэффициент β = 3000 K.

Контрольные вопросы

- 1 Какие волны используются в сверхвысокочастотном (СВЧ, радиоволновом) методе получения информации?
- 2 В каком диапазоне лежат длины волн, используемые в радиоволновом методе получения информации?
 - 3 Что такое инфракрасное излучение?
- 4 Как передаётся тепловая энергия в твердых телах при наличии температурных градиентов?
 - 5 Что такое электрические термометры сопротивления?
- 6 В каком диапазоне изменения температуры могут применяться стандартные платиновые терморезисторы?

8 Какое основное преимущество полупроводниковых терморезисторов?

7 Для измерения какого диапазона температур применяются стандартные

7 Расчет параметров измерительного тракта с ионизирующим излучением

В зависимости от природы ионизирующего излучения рентгеновский вид получения информации подразделяют на подвиды: рентгеновский, гамма-, бета-, нейтронный. В последнее время находят применение потоки позитронов, по степени поглощения которых определяют участки объекта, обедненные или обогащенные электронами.

Наиболее широко используют для получения информации рентгеновское и гамма-излучения. Их можно применять для объектов из самых различных материалов, подбирая благоприятный частотный диапазон и интенсивность излучения.

При методах используется область электромагнитных излучений с длиной волны ν от 10^{-2} до 10^{-8} мкм. С уменьшением длины волны в соответствии формулой Планка ($W=h\nu$) энергия квантов растет и увеличивается проникающая способность излучения.

Закон радиоактивного распада. При радиоактивном распаде среднее число ядер данного радиоактивного изотопа, распадающихся в единицу времени, всегда составляет определенную, характерную для данного изотопа, долю общего числа ядер и определяется постоянной радиоактивного распада λ . Эта закономерность является общей для всех радиоактивных изотопов.

Уменьшение числа радиоактивных ядер N при распаде можно записать в виде уравнения

$$dN = -\lambda N dt, \qquad (7.1)$$

т. е. число ядер dN, распавшихся за промежуток времени dt, пропорционально N и dt. Отрицательный знак в уравнении (7.1) указывает на то, что процесс распада ведет к уменьшению числа ядер в единицу времени.

Закон радиоактивного распада имеет вид экспоненциальной зависимости

$$N = N_0 e^{-\lambda t} , \qquad (7.2)$$

где N — число радиоактивных ядер к моменту времени t;

 N_0 – число ядер в начальный момент времени t = 0;

e – основание натуральных логарифмов, e = 2,718;

 λ – постоянная распада.

Число распадов в секунду в радиоактивном образце называется его активностью. Единицу измерений активности (в СИ) называли беккерелем в честь ученого, открывшего явление радиоактивности. 1 $\mathrm{K} = 1$ расп/с.

Индивидуальное задание

Ознакомиться с основными физическими основами измерительного тракта с ионизирующим излучением. Решить следующие задачи.

- 1 Насколько должно быть увеличено время экспозиции t_3 при просвечивании объекта радиоактивным источником с периодом полураспада T=1 год для обеспечения одной и той же дозы ионизирующего излучения в моменты времени t_1 и t_2 , отличающиеся на 2 месяца?
- 2 Определите отличие степени ослабления монохроматического узкого пучка фотонного излучения при его прохождении через однородную пластину толщиной 5 мм и такую же пластину с инородным включением толщиной 1 мм, если значения линейного коэффициента ослабления для материалов пластины и включения составляют $\mu_1 = 0.8$ см⁻¹ и $\mu_2 = 0.2$ см-1.
- 3 Найдите активность радона, образовавшегося из $m_0 = 1.0$ г радия $^{226}_{88} \mathrm{Ra}$ за одни сутки. Найдите также максимальную активность радона. Периоды полураспада радия и радона соответственно $T_1 = 1, 6 \cdot 10^3$ лет, $T_1 = 3,8$ сут.
- 4 Определите начальную активность радиоактивного препарата магния-27 массой 0,2 мкг, а также его активность через время 6 ч.
- 5 При археологических раскопках были обнаружены сохранившиеся деревянные предметы, активность ${}_{6}\mathrm{C}^{14}$ которых оказалась равной 106 распадов в минуту на 1 г содержащегося в них углерода. В живом дереве происходит в среднем 14,5 распадов за минуту на 1 г углерода. Исходя из этих данных, определите время изготовления обнаруженных предметов.

Контрольные вопросы

- 1 Какой диапазон длин волн используется при рентгеновском методе получения информации?
 - 2 Что такое ионизирующее излучение?
- 3 На какие подвиды в зависимости от природы ионизирующего излучения подразделяют рентгеновский вид получения информации?
 - 4 Кто в научную терминологию ввел термин «радиоактивность»?
 - 5 Когда были открыты рентгеновские лучи?
 - 6 Что представляет собой α-излучение?
 - 7 Что представляет собой у-излучение?
 - 8 Назовите основные единицы измерения ионизирующего излучения.
 - 9 Что такое изотоп?

Список литературы

- **Бриндли, К.** Измерительные преобразователи : справочное пособие / К. Бриндли. Москва : Энергоатомиздат, 1991. 144 с.
- **Гольдштейн, А. Е.** Физические основы получения информации : учебник / А. Е. Гольдштейн. Томск : Том. политехн. ун-т, 2010. 292 с.
- **Шишмарёв, В. Ю.** Физические основы получения информации : учебное пособие для вузов / В. Ю. Шишмарёв. Москва : Академия, 2010. 448 с.
- 4 Физические основы получения информации: учебник / Г. Г. Раннев [и др.]. 2-е изд., перераб. и доп. Москва: КУРС; ИНФРА-М, 2018. 304 с.
- **Раннев, Г. Г.** Методы и средства измерений : учебник для вузов / Г. Г. Раннев, А. П. Тарасенко. 2-е изд., стереотип. Москва : Академия, 2004. 336 с.

