УДК 535.32:621.378

РЕФЛЕКТОМЕТРИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ НАНОРАЗМЕРНЫХ МЕТАЛЛИЧЕСКИХ СЛОЕВ НА ПОДЛОЖКЕ

© 2016 г. А. В. Хомченко¹, И.У. Примак¹, А. Б. Сотский², И.А. Корнеева¹, Н. А. Крекотень³, А. Н. Петлицкий³

E-mail: avkh@mogilev.by

Предложен новый бесконтактный метод контроля параметров наноразмерных металлических покрытий, основанный на обработке измеренной угловой зависимости коэффициента отражения поляризованного лазерного пучка от поверхности тонкопленочной структуры.

DOI: 10.7868/S0367676516040190

Оптический контроль наноразмерных металлических покрытий представляет определенный интерес для микро- и оптоэлектроники. Одним из эффективных методов такого контроля является ПЭВ-спектроскопия, основанная на возбуждении поверхностных электромагнитных волн (ПЭВ) [1]. Благодаря локализации в окрестности поверхности металла ПЭВ крайне чувствительны к состоянию границы раздела, а также к наличию слоев, осажденных на поверхность металлической пленки [1, 2].

Определенные перспективы в области контроля металлических покрытий имеют интегральнооптические методы, основанные на регистрации угловой зависимости коэффициента отражения светового пучка $R(\gamma)$ в схеме призменного возбуждения мод тонкопленочной структуры [3]. В принципе, учет информации о распределении $R(\gamma)$ позволяет определить комплексный показатель преломления и толщину пленок, направляющих ПЭВ, путем решения известных дисперсионных уравнений [1, 4].

Однако при исследовании пленок из алюминия и титана было обнаружено, что погрешности определения их параметров указанным способом становятся неприемлемо высокими, если толщина пленки составляет несколько нанометров [5]. Эту особенность можно объяснить наличием трудно контролируемого переходного слоя между призмой связи и металлической пленкой. В то же время при измерении параметров металлических пленок было замечено, что погрешность измерений уменьшается при увеличении толщины буферного слоя [3], что позволило отказаться от использования призмы связи в установке для волноводной спектроскопии [6] (считая толщину буферного слоя бесконечно большой), сохранив неизменными остальные ее узлы, и таким образом фактически предложить рефлектометрический метод, основанный на многоугловом измерении коэффициента отражения света от исследуемой структуры. Предложенный метод концептуально близок к подходу, продемонстрированному в работе [7], являясь его развитием.

В настоящей работе предложен метод контроля параметров наноразмерных металлических покрытий и двухслойных структур на кремниевой подложке, основанного на обработке измеренной угловой зависимости коэффициента отражения поляризованного лазерного пучка от тонкопленочной структуры. Ниже обсуждаются результаты и особенности такого подхода.

Принципиальная схема установки для измерения распределения *R*(у) приведена на рис. 1. В ней лазерный пучок падает на тонкопленочную структуру 7, установленную на поворотном столике 10. Угол падения пучка на образец изменяется с помощью шагового двигателя 15. Зависимость коэффициента отражения лазерного пучка от поверхности тонкопленочной структуры $R(\gamma)$ регистрируется фотоприемником 12, синхронно перемещаемым вторым шаговым двигателем 14, путем измерения мощности светового пучка, отраженного от образца и мощности падающего пучка, которая контролируется фотоприемником 11 (блок управления двигателями 16 синхронизирован с блоком сравнения каналов 17). После цифровой обработки сигнал поступает в оперативную память компьютера. Измерения проводились с использованием лазерного пучка ТМ- или ТЕполяризации с длиной волны 633 нм, шаг дискретизации угла у составлял 20 секунд.

Возможности такого подхода были протестированы на простейшей структуре — алюминиевая пленка на подложке. Параметры металлического слоя: комплексный показатель преломления и

¹ Белорусско-Российский университет, Могилев, Беларусь.

² Могилевский государственный университет имени А. Кулешова, Могилев, Беларусь.

³ НТЦ БМС ОАО "Интеграл", Минск, Беларусь.

Рис. 1. Схема установки для измерения угловой зависимости коэффициента отражения светового пучка: *I* – источник излучения, *2* – коллиматор, *3* – делитель пучка, *4* – аттенюатор, *5* – поляризатор, *6* – линза, *7* – тонкопленочная структура на подложке *8*, *10* – поворотный столик, *11* и *12* – фотоприемники, *14* и *15* – шаговые двигатели, *16* – блок синхронного управления шаговыми двигателями, *17* – блок сравнения каналов, *18* – аналого-цифровой преобразователь, *19* – персональный компьютер.

его толщину, которая составляла 1-5 нм, определяют путем обработки угловой зависимости коэффициента отражения лазерного пучка от поверхности исследуемой структуры. Результаты измерений угловой зависимости коэффициента отражения светового пучка $R(\gamma)$ представлены на рис. 2.

Как следует из анализа рисунка 2, распределение $R(\gamma)$ имеет высокую чувствительность к толщине наноразмерной металлической пленки. Следует отметить, что химическая модификация пленки также существенно изменяет угловой спектр коэффициента отражения.

Для восстановления параметров пленок путем обработки распределения $R(\gamma)$ использован метод наименьших квадратов. При таком подходе максимизация чувствительности оптического контроля металлических покрытий эквивалентна минимизации погрешности решения обратной оптической задачи.

В данном случае минимизируется целевая функция

$$I = \sum_{i=1}^{n} \left[f(x_i, \gamma_j) - R(\gamma_j) \right]^2, \tag{1}$$

где n — число измерений коэффициента отражения R, $f(x_i, \gamma)$ — теоретическая модель коэффициента отражения, x_i ($x_1 = h$, $x_2 = \text{Re } n_f$, $x_3 = \text{Im } n_f$, h — толщина металлической пленки, n_f — ее пока-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 80 № 4 2016

Рис. 2. Угловая зависимость коэффициента отражения лазерного пучка от алюминиевого слоя, напыленного на кварцевую подложку, толщиной 2 нм (кривая *I*), 3.5 нм (*2*), 5 нм (*3*), 18 нм (*4*) и 26 нм (*5*).

затель преломления) — параметры модели, подлежащие определению; угол падения пучка γ изменяется в диапазоне (*a*,*b*).

Тогда среднеквадратичная погрешность $\sigma(x_k)$ определения параметра x_k может быть оценена из выражения

$$\sigma(x_k) = \sigma(R) J_k \sqrt{(b-a)/n}, \qquad (2)$$

где
$$J_k^2 = \int_a^b \sum_i \left[M_{ki}^{-1} \left(\frac{\partial f}{\partial x_i} \right) \right]^2 d\gamma,$$

 $M_{ki} = \int_a^b \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_k} d\gamma,$

 $\sigma(R)$ – среднеквадратичное отклонение *R*.

На рис. 3 представлена зависимость коэффициента J_1 , определяющего погрешность восстановления параметра x_i , от толщины пленки.

Расчеты выполнены при a = 0, $b = \pi/2$ на длине волны 633 нм для пленки титана, расположенной на кремниевой подложке. Как следует из анализа представленных на рисунке данных для проведения подобных измерений, предпочтительнее использовать свет ТМ-поляризации. В этом случае функция $J_1(h)$ достигает минимума и остается практически постоянной при толщине пленки до h = 20 нм. Значительный рост погрешности измерений в диапазоне h > 20 нм объясняется тем, что

Рис. 3. Зависимость коэффициента J_1 от толщины пленки при определении ее параметров на основе обработки угловых зависимостей коэффициента отражения для волн ТМ- (1) и ТЕ-поляризации (2).

более толстая металлическая пленка становится непрозрачной.

В целях анализа возможностей метода рефлектометрии металлических пленок на кремниевой подложке был выполнен ряд вычислительных экспериментов. Рассматривалось отражение света (длина волны 633 нм) от поверхности структур типа Al–Si, Ti–Si, Al–SiO₂–Si, Ti–SiO₂–Si. При этом зондирующее излучение имеет TM-поляризацию. Следует отметить, что, согласно нашим оценкам и результатам работы [7], в этом случае достигается наибольшая чувствительность к определяемым параметрам. Диапазон углов падения изменялся в пределах от 8° до 88°, количество шагов по углу n = 200. Экспериментальные данные моделировались добавлением к рассчитанной зависимости $R(\gamma)$ погрешностей, имеющих нормальный закон распределения с задаваемым среднеквадратическим отклонением σ (в данном случае $\sigma = 5 \cdot 10^{-3}$). Результаты решения обратной задачи путем минимизации функционала (1) для структур при различной толщине алюминиевой пленки представлены в таблице.

Анализ результатов свидетельствует о том, что определение параметров алюминиевой пленки может быть выполнено с погрешностью, не превышающей 15%, в диапазоне толщин от 0.02 до 0.03 мкм, а титановой пленки — в диапазоне толщин 0.01—0.03 мкм. Значение верхней границы данного диапазона обусловлено малой глубиной проникновения в металл излучения: для алюминия она составляет ~0.014 мкм, для титана — ~0.027 мкм. Большое значение определяемой минимальной толщины пленки в указанном диапазоне обусловлено существенным влиянием на отражение света поглощающей кремниевой подложки.

При толщинах металлической пленки менее 0.01 мкм рассматриваемая методика менее чувствительна к параметрам пленки, однако существенное влияние оказывает кремниевая подложка. Наличие буферного слоя между кремнием и металлом позволяет расширить границы определения параметров металлической пленки. Согласно оценкам, параметры алюминиевой пленки в структуре Al–SiO₂–Si можно осуществить с погрешностью, не превышающей 15%, в диапазоне толщин от 5 до 50 нм, а титановой пленки – от 5 до 60 нм.

Действительная и мнимая части диэлектрической проницаемости $\varepsilon_m = \varepsilon'_m + i\varepsilon''_m$ и толщина слоя <i>h</i> , мкм	Значения параметров, определенные по угловой зави- симости коэффициента отражения, $\varepsilon_m = \varepsilon'_m + i\varepsilon'_m$ <i>h</i> , мкм
47.56 + <i>i</i> 16.8	68.07 + <i>i</i> 17.29
0.005	0.038
47.56 + <i>i</i> 16.8	37.8 + <i>i</i> 19.25
0.01	0.0125
47.56 + <i>i</i> 16.8	45.96 + <i>i</i> 18.34
0.02	0.021
47.56 + <i>i</i> 16.8	47.15 + <i>i</i> 17.97
0.03	0.034
47.56 + i 16.8	47.55 + <i>i</i> 17.4
0.04	0.09

Параметры алюминиевого слоя на кремниевой подложке

Таким образом, как следует из представленных данных, описанный метод оптического контроля параметров наноразмерных металлических покрытий, основанный на обработке измеренной угловой зависимости коэффициента отражения поляризованного лазерного пучка от поверхности тонкопленочной структуры и гораздо более простой в реализации, обеспечивает точность результатов, сопоставимую с данными эллипсометрии и интерферометрии.

СПИСОК ЛИТЕРАТУРЫ

1. *Никитин А.К., Логинов А.П., Головцов Н.И. //* Оптика и спектроскопия. 2001. Т. 90. № 6. С. 965.

- 2. *Khomchenko A.V.* Waveguide spectroscopy of thin films. N. Y.: Acad. Press, 2005.
- 3. Сотский А.Б., Steingart L.M., Jackson J.H. и др. // ЖТФ. 2013. Т. 83. № 11. С. 105.
- 4. Абаев М.И., Пустотина С.Р. // Автометрия. 1997. № 1. С. 119.
- 5. *Kangarlou H., Aghgonbad М.М.* // Оптика и спектроскопия. 2013. Т. 115. № 5. С. 844.
- 6. Хомченко А.В., Сотский А.Б. и др. // ЖТФ. 2005. Т. 75. № 6. С. 98.
- 7. Биленко Д.И., Сагайдачный А.А., Галушка В.В., Полянская В.П. // ЖТФ. 2010. Т. 80. Вып. 10. С. 89.