МЕЖГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ»

Кафедра «Транспортные и технологические машины»

ЭКСПЛУАТАЦИЯ ДОРОЖНЫХ, СТРОИТЕЛЬНЫХ, ПОДЪЕМНО-ТРАНСПОРТНЫХ МАШИН

Методические рекомендации к лабораторным работам для студентов направления подготовки 23.03.02 «Наземные транспортно-технологические комплексы» очной формы обучения

УДК 69.0023.5.004.2 ББК 39.311 Э 41

Рекомендовано к изданию учебно-методическим отделом Белорусско-Российского университета

Одобрено кафедрой «Транспортные и технологические машины» «28» ноября 2018 г., протокол № 4

Составители: канд. техн. наук, доц. В. В. Кутузов; канд. техн. наук, доц. А. В. Кулабухов

Рецензент канд. техн. наук, доц. А. Е. Науменко

Методические рекомендации к лабораторным занятиям предназначены для студентов направления подготовки 23.03.02 «Наземные транспортнотехнологические комплексы» очной формы обучения.

Учебно-методическое издание

ЭКСПЛУАТАЦИЯ ДОРОЖНЫХ, СТРОИТЕЛЬНЫХ, ПОДЪЕМНО-ТРАНСПОРТНЫХ МАШИН

Ответственный за выпуск И. В. Лесковец

Технический редактор С. Н. Красовская

Компьютерная верстка М. М. Дударева

Подписано в печать . Формат 60x84/16. Бумага офсетная. Гарнитура Таймс. Печать трафаретная. Усл. печ. л. . Уч.-изд. л. . . Тираж 56 экз. Заказ №

Издатель и полиграфическое исполнение: Межгосударственное образовательное учреждение высшего образования «Белорусско-Российский университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/156 от 24.01.2014. Пр. Мира, 43, 212000, Могилев.

© Белорусско-Российский университет, 2019

Содержание

1 Лабораторная работа № 1. Определение внутрисменного режима	
работы СДМ	4
2 Лабораторная работа № 2. Определение производительности СДМ	
3 Лабораторная работа № 3. Техническое обслуживание погрузчика	
«Амкодор 332» (TO-18)	.12
4 Лабораторная работа № 4 Регулировка органов управления	
гусеничных машин	.19
5 Лабораторная работа № 5. Регулировка органов управления колесны	X
машин	.25
6 Лабораторная работа № 6. Выбор моторного масла в зависимости от	
степени форсирования двигателя	.28
7 Лабораторная работа № 7. Диагностика сборочных единиц и систем	
СДМ	.34
8 Лабораторная работа № 8. Техническое обслуживание и диагностика	l
электрооборудования СДМ	.36
	.44

1 Лабораторная работа № 1. Определение внутрисменного режима работы СДМ

Цель работы: изучить и практически освоить методы определения внутрисменного режима работы.

Теоретические сведения

Режим работы машин устанавливает распределение рассматриваемого периода календарного времени: на время, в течение которого машина выполняет свои основные и вспомогательные функции (передвигается вдоль фронта работ, с одной рабочей зоны в другую, из объекта на объект); на время подготовки машины к работе; на время перерывов и всех видов простоев.

Режим работы разрабатывают применительно к определённому отрезку времени: смене, суткам, месяцу, кварталу, году; режимы суточные, месячные и квартальные - при составлении проектов производства работ. Наиболее важными, с точки зрения расчёта производительности, являются сменный и годовые режимы работы. На основе этих режимов выявляют степень использования машины и двигателя по времени, оценивают простои, рассчитывают эксплуатационную производительность и разрабатывают мероприятия по улучшению эксплуатации машин. По годовому режиму работы, кроме того, определяют число дней нахождения машины в технических обслуживаниях (ТО) и ремонтах [1, 2].

Для целей планирования и организации эксплуатации строительных и дорожных машин (СДМ), согласно ГОСТ 25646-95 по каждой машине ведётся учёт объёмов выполняемых работ, времени нахождения в работе, фактической наработки в мото-часах.

Учёт времени работы СДМ ведётся в мото-часах и машино-часах.

Momo-час – это наработка двигателя в течение часа, определяемая по приборам. Время в мото-часах используется при планировании постановки машины в TO и ремонты, вычислении планируемой годовой наработки H_{nn} , расхода и списания ТСМ и т. д. Определяется по счётчикам мото-часов или путём проведения хронометража работы СДМ.

Машино-час – это среднее время работы СДМ продолжительностью один час. Включает в себя: время выполнения технологических операций; время на перемещение строительной техники по фронту работ; время технических и технологических перерывов в работе СДМ. Время в машино-часах используется при определении планируемого годового количества часов рабочего времени машины T_{ν} , учёте времени работы оператора машины и расчёте его заработной платы и т. д. Определяется как астрономическое время работы машины.

Наработка машины определяется по показаниям счётчика, а при его отсутствии - по данным сменного времени, скорректированным с помощью коэффициента внутрисменного режима работы, конкретного для каждого типа машин и вида работ.

В таблице 1.1 приведён пример сменного режима работы погрузчика «Амкодор 332» и катка «НАММ 3414 VIO» в летний и зимний промежутки времени. В течение смены наблюдаются простои по организационным и метеорологическим причинам. Исключая эти простои из календарного рабочего времени смены, определяют её полезное рабочее время t_n .

Таблица 1.1 – Хронометраж работы погрузчика «Амкодор 332» и катка «НАММ 3414 VIO» в летний и зимний промежутки времени

	Kan		_	узчик
Элемент режима работы	«HAMM 3			юр 332»
	Затраты			времени
Продоличности изоти од од Т	Зима 8 ч	Лето 9 ч	Зима 8 ч	Лето 9 ч
Продолжительность смены T_{cm} с учётом коэффициента сменности	8 4	9 4	84	94
		4 5	2 24	
Простои по организационным причинам t_{ope}	3 ч 3 мин	1ч 7 мин	2 ч 24 мин	9 мин
из-за отсутствия фронта работы и несогласованности производительности машин комплекта	3 ч 3 мин	1ч 7мин	2 ч 24 мин	9 мин
из-за несвоевременного обеспечения TCM	0 мин	0 мин	0 мин	0 мин
Полезное рабочее время смены t_n	4 ч 57 мин	7 ч 53 мин	5 ч 36 мин	8 ч 51 мин
Перерывы по конструктивно-техническим причинам $t_{\kappa m}$	19 мин	25 мин	13 мин	41 мин
подготовительно-заключительное время, заправка топливом, передача смены	14 мин	0 мин	9 мин	21 мин
ежесменное техническое обслуживание	5 мин	25 мин	4 мин	20 мин
Перерывы, связанные с организацией работы машинистов t_{om}	13 мин	1 ч 2 мин	29 мин	41 мин
на получение задания и ознакомление с чертежами и объектом	7 мин	27 мин	6 мин	0 мин
на отдых и личные надобности	6 мин	35 мин	23 мин	41 мин
Машинное время работы t_{M^q}	4 ч 25 мин	6 ч 26 мин	4 ч 54 мин	7 ч 39 мин
Технологические перерывы, связанные с работой машины t_m	31 мин	11 мин	50 мин	19 мин
на перебазировку	14 мин	7 мин	17 мин	5 мин
на переходы из одной рабочей зоны в другую	17 мин	4 мин	33 мин	14 мин
Время чистой работы машины t_{qp}	3 ч 54 мин	6 ч 15 мин	4 ч 4 мин	7 ч 20 мин
Коэффициент перехода от количества рабочего времени в машино-часах к наработ-ке в мото-часах K_n	0,55	0,71	0,61	0,85
Коэффициент внутрисменного режима работы K_{θ}	0, 8	0,69	0,51	0,81

Если из полезного времени t_n вычесть перерывы и простои по конструктивно-техническим причинам, перерывы, связанные с организацией труда машинистов, то получим время чистой работы машины.

Время чистой работы машины $t_{u.p.}$, в течение которого выполняются физические объёмы работ, исключая из $t_{_{MY}}$ время вспомогательных функций – технологических операций по передвижению, перехода из одной зоны в другую, $t_{y.p.} = t_{MY} - t_m.$

На протяжении смены машина выполняет как основные, так и вспомогательные операции. Использование машины по времени в течение смены оценивается коэффициентом внутрисменного режима работы K_{ε} . Фактическое значение коэффициента K_{ε} определяется по формуле

$$K_{e} = \frac{T_{cM} - (t_{ope} + t_{M} + t_{\kappa m} + t_{om} + t_{m})}{T_{cM}},$$
 (1.1)

где $T_{c_{M}}$ – продолжительность смены, ч;

 t_{ope} – простои по организационным причинам, ч;

 $t_{\scriptscriptstyle M}$ – простои по метеоусловиям (в процессе проведения хронометража для Могилёвской области они составляют менее 2 % от T_{cm}), ч;

 $t_{\kappa m}$ — перерывы по конструктивно-техническим причинам, ч;

 t_{om} — перерывы, связанные с организацией труда машиниста, ч;

 t_m — перерывы технологические, ч.

Коэффициент перехода от количества рабочего времени в машиночасах к наработке в мото-часах K_n берется по таблице 1.2 или рассчитывается по формуле

$$K_n = \frac{t_{M^q}}{T_{CM}} \ . \tag{1.2}$$

Если принять во внимание, что СДМ в настоящее время выпускаются с системой запуска двигателя из кабины машиниста, то работу двигателя на холостых оборотах можно исключить и числитель в формуле (1.1) практически равен наработке в мото-ч.

В процессе эксплуатации СДМ коэффициент внутрисменного режима работы может определяться по формуле

$$K_{\scriptscriptstyle \theta} = K_{\scriptscriptstyle n} \cdot K_{\scriptscriptstyle x}, \tag{1.3}$$

 K_n – коэффициент перехода от количества рабочего времени в машиночасах к наработке в мото-часах, мото-ч/машино-ч;

 K_{x} – коэффициент, учитывающий потери времени выполнения полезной работы из-за холостых оборотов двигателя.

Таблица 1.2 – Значения основных коэффициентов перехода от количества рабочего времени в машино-часах к наработке в мото-часах для строительных, дорожных и подъёмно-транспортных машин и оборудования, по ДМД 02191.7.008-2009

Бульдозеры 0,7 Экскаваторы одноковшовые с ковшом вместимостью до 0,4 м³ 0,7 То же с ковшом вместимостью более 0,4 м³ 0,8 Автогрейдеры 0,7 Краны стреловые автомобильные грузоподъемностью до 6,3 т включительно 0,7 То же свыше 6,3 до 10 т включительно 0,74 То же свыше 10 т 0,74 Краны стреловые пневмоколесные 0,72 Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы голесные 0,7 Тракторы греленичные 0,7 Тракторы греленичные 0,7 Тракторы греленичные 0,7 Тракторы греленичные 0,7 Тракторы-рыхлители 0,7 Тракторы грелевочные 0,7 Катки моториные 0,55 Катки моториные 0,55 Катки моториные 0,5 Мамбуры на базе тракторов 0,4 То же на базе аркомобилей 0,5 <th>Наименование машин и оборудования</th> <th>Значение коэффициента K_n</th>	Наименование машин и оборудования	Значение коэффициента K_n
Экскаваторы одноковшовые с ковшом вместимостью до 0,4 м³ 0,7 То же с ковшом вместимостью более 0,4 м³ 0,8 Автогрейдеры 0,7 Краны стреловые автомобильные грузоподъемностью до 6,3 т включительно 0,7 То же свыше 6,3 до 10 т включительно 0,72 То же свыше 10 т 0,74 Краны стреловые пневмоколесные 0,72 Краны стреловые гуссиичные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гуссничные 0,5 Катки моторные 0,6 Ямобуры на база вракторов 0,4	Бульдозеры	
То же с ковшом вместимостью более 0,4 м³ 0,8 Автогрейдеры 0,7 Краны стреловые автомобильные грузоподъемностью до 6,3 т включительно 0,7 То же свыше 6,3 до 10 т включительно 0,72 То же свыше 10 т 0,74 Краны стреловые пневмоколесные 0,72 Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы гусеничные 0,7 Катки моторные предеменовыше 0,5 Катки моторные 0,5 Катки моторные 0,4 Корчов на база втомобилей 0,4 А	· · · · ·	· ·
Автогрейдеры 0,7 Краны стреловые автомобильные грузоподъемностью до 6,3 т включительно 0,7 То же свыше 6,3 до 10 т включительно 0,72 То же свыше 10 т 0,74 Краны стреловые пневмоколесные 0,72 Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Катки моторые 0,55 Катки моторые 0,55 Катки моторые 0,55 Автовгорузчики 0,6 Ямобуры на базе тракторов 0,4 О же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автоветоносмесители 0,5 <td></td> <td>•</td>		•
Краны стреловые автомобильные грузоподъемностью до 6,3 т включительно 0,7 То же свыше 6,3 до 10 т включительно 0,72 То же свыше 10 т 0,74 Краны стреловые пневмоколесные 0,72 Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы гусеничные 0,7 Тракторы грелевочные 0,75 Катки моторные 0,75 Автоногрузчики 0,6 Ямобуры на база тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,5 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковпювые, траншейные, роторные и цепные 0,5 Стационарные бетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 Стационарные на базе трактора 0,5 Сваебойные установки <td></td> <td>1</td>		1
чительно 0,72 То же свыше 10 т 0,74 Краны стреловые пневмоколесные 0,72 Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы гременичые 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,4 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные 0,5 Растворосмесители 0,35 Растворосмесители 0,35 Растворосмесители 0,35 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7	1 1	
То же свыше 6,3 до 10 т включительно		0,7
То же свыше 10 т 0,74 Краны стреловые пневмоколесные 0,72 Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы-рыхлители 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Отационарные бетоносмесители 0,5 Стационарные бетоносмесители 0,5 Стационарные передвижные 0,35 Автобетоноасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцемен		0.72
Краны стреловые пневмоколесные 0,72 Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы-рыхлители 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные бетоносмесители 0,5 Растворосмесители 0,5 Свердвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Свебойные установки		*
Краны стреловые гусеничные 0,73 Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковповые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы-рыхлители 0,7 Тракторы-рыхлители 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурилывые 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Стационарные бетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные бетоносмесители 0,5 Вышки самоходные на базе трактора 0,5 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировцики		
Скреперы 0,74 Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы грелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,35 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные бетоносмесители 0,5 передвижные 0,5 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автогрементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	· • • • • • • • • • • • • • • • • • • •	
Трубоукладчики 0,55 Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы-рыхлители 0,7 Тракторы-рыхлители 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Отационарные бетоносмесители 0,35 Растворосмесители 0,35 Растворосмесители 0,35 Растворосмесители 0,5 стационарные бетоносмесители 0,5 стационарные ветоносмесители 0,5 Сваебойные установки 0,7 Автоброннаторы 0,7 Автогудронаторы 0,7 Автогронногоры 0,7 Авторонногоры 0,7 Планировщики 0,4 <td></td> <td></td>		
Погрузчики одноковшовые 0,6 Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы-рыхлители 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,35 Растворосмесители 0,35 Растворосмесители 0,5 стационарные бетоносмесители 0,5 стационарные 0,5 автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	* *	
Тракторы колесные 0,7 Тракторы гусеничные 0,7 Тракторы-рыхлители 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,5 Сваебойные установки 0,7 Автоцементовозы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		·
Тракторы гусеничные 0,7 Тракторы-рыхлители 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автоудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Тракторы-рыхлители 0,7 Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,35 Растворосмесители 0,5 стационарные бетоносмесители 0,5 стационарные 0,5 передвижные 0,5 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		· ·
Тракторы трелевочные 0,75 Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,35 Растворосмесители 0,5 стационарные бетоносмесители 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автоцементовозы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Катки моторные 0,55 Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Автопогрузчики 0,6 Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Ямобуры на базе тракторов 0,4 То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,5 передвижные 0,5 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	•	·
То же на базе автомобилей 0,5 Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,5 гационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Машины бурильные 0,4 Асфальтоукладчики 0,43 Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Асфальтоукладчики0,43Автовышки, автогидроподъемники0,75Экскаваторы многоковшовые, траншейные, роторные и цепные0,5Автобетоносмесители0,5Стационарные бетоносмесители0,35Растворосмесители0,5стационарные0,5передвижные0,35Автобетононасосы0,42Вышки самоходные на базе трактора0,55Сваебойные установки0,7Автогудронаторы0,7Автоцементовозы0,7Планировщики0,4Корчеватели, кусторезы0,32		
Автовышки, автогидроподъемники 0,75 Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Экскаваторы многоковшовые, траншейные, роторные и цепные 0,5 Автобетоносмесители 0,5 Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Автобетоносмесители0,5Стационарные бетоносмесители0,35Растворосмесители0,5стационарные0,5передвижные0,35Автобетононасосы0,42Вышки самоходные на базе трактора0,55Сваебойные установки0,7Автогудронаторы0,7Автоцементовозы0,7Планировщики0,4Корчеватели, кусторезы0,32	*	·
Стационарные бетоносмесители 0,35 Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Растворосмесители 0,5 стационарные 0,5 передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		·
стационарные0,5передвижные0,35Автобетононасосы0,42Вышки самоходные на базе трактора0,55Сваебойные установки0,7Автогудронаторы0,7Автоцементовозы0,7Планировщики0,4Корчеватели, кусторезы0,32		0,55
передвижные 0,35 Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	<u> </u>	0.5
Автобетононасосы 0,42 Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	_	· ·
Вышки самоходные на базе трактора 0,55 Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	1	
Сваебойные установки 0,7 Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32		
Автогудронаторы 0,7 Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	1 1	·
Автоцементовозы 0,7 Планировщики 0,4 Корчеватели, кусторезы 0,32	·	
Планировщики 0,4 Корчеватели, кусторезы 0,32	* * * *	· · · · · · · · · · · · · · · · · · ·
Корчеватели, кусторезы 0,32		· · · · · · · · · · · · · · · · · · ·
	•	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·

При выключении двигателя во время всех перерывов в работе машины $K_x = 1$, т. е. $K_\theta = K_n$. Практически в процессе эксплуатации СДМ $K_\theta \le K_n$ при одинаковом качественном их изменении в зависимости от наработки. Так, анализ коэффициентов K_{θ} и K_{n} в разный период времени (зима / лето) показывает значительные изменения. Например: для погрузчика грузоподъемностью 3 т при проведении хронометража в зимний период времени коэффициент K_6 был равен 0,51, а коэффициент K_n – 0,61, а в летнее время данные значения были выше и соответствовали 0,81 и 0,85.

Проведенные исследования показывают отличие значений K_a от K_n в пределах 0...15 %, что позволяет значительно точнее вычислять эксплуатационную производительность, а при исключении работы двигателя на холостых оборотах ошибка полностью устраняется. Определять K_n можно на основании данных из карточек учёта работы машин по формуле

$$K_n = \frac{H_{\scriptscriptstyle M}}{T_{\scriptscriptstyle U}},\tag{1.4}$$

где H_{M} – значение наработки, мото-ч;

 T_{4} – использование машины в работе, машино-ч.

Усреднённые значения коэффициента K_n для расчётов приводятся в ДМД 02191.7.008–2009 [3], сборниках норм расхода топлива [4] и литературе по эксплуатации СДМ.

Для краткосрочного планирования (день, неделя, месяц) целесообразно учитывать изменения данного коэффициента в зависимости от сезона использования и наработки с начала эксплуатации машины. Причем данные по сезону (время года, метеоусловия, температура окружающей среды и т. д.) необходимо учитывать по метеопрогнозам на планируемый период времени. Для планирования на длительный промежуток времени (квартал, год и т. д.) определять значения коэффициента K_n целесообразно только от одного фактора — наработки с начала эксплуатации. Использование большего числа факторов увеличит вероятность ошибочных прогнозов. В частности, постоянные изменения погодных условий и возможные аномальные колебания сложно поддаются длительному прогнозированию, которое требует большого числа исходных данных, что в итоге не обеспечит точность определения K_n на длительный период времени.

Порядок выполнения работы

- 1 Изучить способы определения внутрисменного режима работы.
- 2 Определить коэффициенты K_{θ} и K_{n} для погрузчика «Амкодор 332» и кат-ка «НАММ 3414 VIO».
 - 3 Оформить отчёт по лабораторной работе.

Контрольные вопросы

- 1 Опишите сменный режим работы машин и виды внутрисменных простоев.
- 2 Что такое машино-час, мото-час?
- 3 Каким образом в расчётах учитывается внутрисменный режим работы СДМ?
 - 4 Каким образом учитываются перерывы в работе СДМ в течение смены?

- 5 Какие виды внутрисменных простоев на практике наиболее снижают коэффициент внутрисменного режима работы?
 - 6 В чем отличие и схожесть коэффициентов K_n и K_e ?
- 7 В какой нормативной литературе можно найти усреднённые значения коэффициента K_n ?
- 8 На какие технико-экономические показатели влияет коэффициент внутрисменного режима работы?

2 Лабораторная работа № 2. Определение производительности СДМ

Цель работы: изучить и практически освоить методы определения производительности СДМ на примере погрузчика «Амкодор 332» (TO-18).

Теоретические сведения

Определение производительности СДМ выполняется многими методами. Это объясняется большой номенклатурой и принципиальным отличием их рабочих процессов.

Производительность машины определяется количеством продукции в натуральных единицах (метрах кубических, метрах квадратных, тоннах, штуках и т. д.), выработанным за определённое время (час, смену, месяц, год).

Различают три вида производительности: теоретическую (конструктивную), техническую, эксплуатационную.

Теоретическая (конструктивная) производительность Π_{κ} определяется на этапе прогнозирования и задаётся, как правило, при формировании технического задания на проектирование, обусловливая выбор параметров и характеристик машины. Это максимально возможная производительность при непрерывной работе машины в течение фиксированного промежутка времени (цикла, часа и т. д.) с максимальным использованием мощности двигателя и рабочих скоростей, т. е. с исключением простоев и потерь энергии. Определяется она в зависимости от принципа действия машины.

Конструктивная производительность машин цикличного действия (экскаваторов, бульдозеров, скреперов, щековых дробилок, грузоподъёмных кранов и т. д.) находится делением количества материала, разработанного (перемещённого) за цикл работы машины, на продолжительность этого цикла. При этом часто количество материала определяют по вместимости рабочего органа (ковша) или грузоподъёмности крана, а также по известным формулам для расчёта объёма призмы волочения бульдозера или объёма призмы материала, высыпающегося из щели дробилки, и т. д.).

Конструктивная производительность машин непрерывного действия (траншейных экскаваторов, а также конвейеров и элеваторов, автогрейдеров, асфальтоукладчиков и дорожных катков и т. д.) во время рабочего процесса **Техническая производительность** Π_m , в отличие от конструктивно-расчётной, учитывает условия производства работ, в том числе свойства разрабатываемого материала, степень использования рабочего оборудования (режимы работы), технические приёмы выполнения работ и т. д.

Эксплуатационная производительность $\Pi_{\mathfrak{I}}$ — производительность, достигнутая в реальных условиях эксплуатации машин с учётом всех простоев. Она принимается за основу при расчёте экономической эффективности новых машин и выборе вариантов механизации.

Определить теоретическую, техническую и эксплуатационную производительность СДМ на примере погрузчика «Амкодор 332» (TO-18).

Теоретическая (конструктивная) производительность Π_{κ} определяется по формуле

$$\Pi_{\kappa} = \frac{3600 \cdot g}{t_{u}},$$
(2.1)

где g — теоретическая емкость (вместимость) ковша («Амкодор 332» (ТО-18) — вместимость основного ковша — 1,9 м³; «Амкодор 342» (ТО-28) — вместимость основного ковша — 2,3 м³), м³;

 t_u – продолжительность цикла, с.

$$t_{u} = t_{1} + t_{2} + t_{3} + t_{4} + t_{5}, (2.2)$$

где t_1 – время заполнения ковша, c;

 t_2 – время подъёма рабочего оборудования, с;

 t_3 – время перемещения погрузчика к месту выгрузки (к самосвалу), с;

 t_4 — время, затрачиваемое на выгрузку, с;

 t_5 — время на возвращение в исходное положение, с.

Техническая производительность погрузчика Π_m определяется по формуле

$$\Pi_T = \frac{3600 \cdot g}{t_u} \cdot \frac{K_{\text{\tiny Han}} \cdot K_{\text{\tiny 3pe}}}{K_p \cdot K_u}, \tag{2.3}$$

где $K_{\text{нап}}$ – коэффициент наполнения ковша (таблица 2.1);

 K_{2pz} – коэффициент эргономических свойств, принимаем $K_{2pz} = 1$;

 K_p – коэффициент разрыхления грунта, (таблица 2.2);

 K_u – коэффициент учитывающий продолжительность цикла для разных видов рабочего оборудования, принимаем $K_u = 1$.

Эксплуатационная производительность $\Pi_{\mathfrak{I}}$ учитывает влияние перерывов в работе коэффициентом внутрисменного режима работы $K_{\mathfrak{g}}$:

$$\Pi_{9} = \Pi_{m} \cdot K_{e} \,. \tag{2.4}$$

Годовая эксплуатационная производительность Π_{ε} определяется по формуле

$$\Pi_{2} = \Pi_{3} \cdot T_{y} , \qquad (2.5)$$

где T_{y} – годовое количество рабочего времени, машино-ч.

Таблица 2.1 – Значения коэффициента наполнения ковша K_{han} для фронтальных погрузчиков

Грунт	$K_{\!\scriptscriptstyle Han}$
Щебень	0,951,2
Суспенчатый грунт (грунт 1 категории)	0,951,02
Торф и растительный грунт (грунт 1 категории)	1,151,23
Средний суглинок (грунт 2 категории)	1,051,12
Тяжелый суглинок (грунт 3 категории)	1,001,18

Таблица 2.2 - 3начение коэффициента разрыхления грунта K_p

Вид грунта	Объёмный вес, г/м ³	K_p
Рыхлый растительный грунт	1,2	1,21,3
Пески, уплотнённый растительный грунт	1,51,6	1,081,25
Супеси, лёгкие суглинки	1,6	1,161,25
Тяжёлые суглинки	1,75	1,181,3
Чистая жирная глина	1,8	1,31,4
Мягкие известняки, меловые породы	2,2	1,31,4
Твёрдые песчаники и известняки	2,5	1,41,5

Продолжительность цикла t_u учитывается хронометражем. Средняя продолжительность цикла погрузчика «Амкодор 332» при погрузке в транспортные средства в летний период времени $t_u = 30$ с, в зимний $t_u = 45$ с. В расчётах используются данные хронометража.

Техника безопасности

- 1 Перед началом запуска двигателя необходимо убедиться, что рычаг коробки передач находится в нейтральном положении.
- 2 Перед началом движения необходимо убедиться в отсутствии людей в опасной зоне.
- 3 Запрещается поднимать и опускать ковш во время нахождения около него студентов.
 - 4 Все операции производятся в присутствии учебного мастера.

Порядок выполнения работы

- 1 Изучить способы определения производительности СДМ.
- 2 Определить производительность для погрузчика «Амкодор 332» (TO-18).

Содержание отчета

- 1 Теоретически определить эксплуатационную производительность.
- 2 Определить эксплуатационную производительность по результатам хронометража и обмера.
 - 3 Сравнить результаты и оформить отчет.

Контрольные вопросы

- 1 Что включают в себя понятия теоретической, технической и эксплуатационной производительности?
 - 2 Чем вызвано введение различных категорий производительности?
 - 3 Какие факторы влияют на коэффициент наполнения и разрыхления грунта?
 - 4 Как учитываются перерывы в работе СДМ в течение смены?
 - 5 Какие методы повышения производительности Вам известны?

3 Лабораторная работа № 3. Техническое обслуживание погрузчика «Амкодор 332» (TO-18)

Цель работы: изучить периодичность проведения, перечень и последовательность операций, пробрести практические навыки технического обслуживания погрузчика «Амкодор 332» (TO-18).

Теоретические сведения

Техническое обслуживание погрузчика «Амкодор 332» (TO-18).

Техническое обслуживание подразделяется на следующие виды: ежесменное техническое обслуживание (EO); техническое обслуживание № 1 (TO-1); техническое обслуживание № 2 (TO-2); техническое обслуживание № 3 (TO-3); сезонное техническое обслуживание (CO).

В соответствии с руководствами по эксплуатации [7–9] рекомендуемые периодичности проведения технических обслуживаний составляют: ТО-1 – каждые 125 мото-ч. работы; ТО – 500 мото-ч; ТО-3 – 1000 мото-ч; СО проводится при переходе к летнему и зимнему сезонам эксплуатации.

Допускается отклонение от установленной периодичности проведения технических обслуживаний в пределах 10 %. При выполнении каждого конкретного планового ТО обязательно осуществляются смазочные работы согласно схеме смазки, все дополнительные операции ТО, указанные в руководствах по эксплуатации и сервисных книжках, а также все операции предыдущих ТО (например, при выполнении ТО-3 через 1000 ч дополнительно проводятся работы ЕО, ТО-1 и ТО-2).

Ежесменное техническое обслуживание включает:

- очистку погрузчика от пыли и грязи в конце смены;
- проверку и при необходимости доливку уровней масла, топлива и охлаждающей жидкости в двигателе внутреннего сгорания (ДВС);

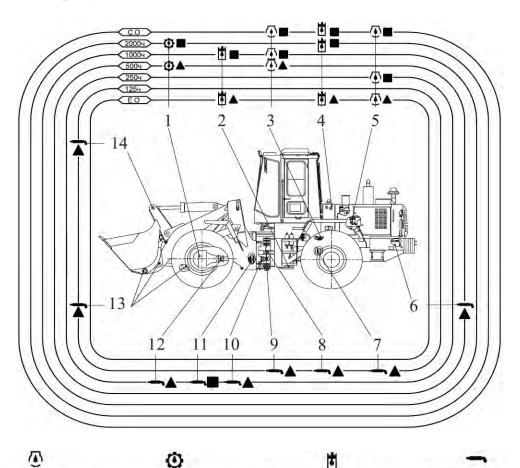
- проверку комплектности и состояния наружных креплений сборочных единиц, особенно колёс и крышек гидроцилиндров;
- проверку отсутствия течи масла, топлива, электролита и охлаждающей жидкости;
 - слив конденсата из воздушных баллонов;
 - в зимнее время слив конденсата из топливной системы;
- проверку давления в шинах; исправности приборов освещения, сигнализации и контроля;
 - проверку системы тормозов и рулевого управления перед выездом из базы. Трудоёмкость ЕО составляет 0,2 чел.-ч.

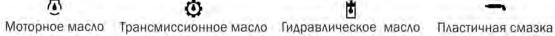
Техническое обслуживание № 1 включает следующие операции:

- выполнить работы ЕО, перечень которых приведён выше;
- проверить и при необходимости отрегулировать натяжение ремней вентилятора и генератора;
 - провести уход за воздухоочистителем с заменой масла в поддоне;
 - проверить величину свободного хода тормозной педали;
- проверить исправность всех механизмов системы управления погрузчиком (рулевого управления, пневмосистемы, электрооборудования);
- промыть заливные фильтра топливного и масляных баков: провести все смазочные работы согласно карте смазки.

Трудоёмкость ТО-1 составляет 2,6 чел.-ч.

Техническое обслуживание № 2 включает следующие операции:


- выполнить работы ТО-1;
- очистить ротор центрифуги от отложений;
- заменить масло в картере основного двигателя;
- проверить состояние электропроводки и вентиляционные отверстия аккумулятора;
 - проверить герметичность тормозных камер;
- проверить и при необходимости отрегулировать ход штоков тормозных камер и стояночный тормоз;
- проверить состояние накладок, осей колодок и действие тормозной педали, через верхний люк гидромеханической коробки передач (ГМКП);
- проверить лёгкость вращения и суммарное осевое перемещение первичного вала (допустимое перемещение 0,5 мм);
 - снять корпус привода стояночного насоса;
- проверить состояние зубчатых венцов каретки диапазонов и ступиц шестерён выходного вала ГМКП;
 - продуть все каналы и маслопроводы ГМКП;
 - прочистить жиклеры фрикционных муфт;
 - проверить регулировку конических подшипников ведущих мостов;
 - проверить надёжность крепления фланцев карданных валов;
 - выполнить все смазочные работы согласно карте смазки.


Трудоёмкость ТО-2 составляет 10,2 чел-ч.

Техническое обслуживание № 3 включает следующие операции:

- выполнить все работы по ТО-2;
- проверить и при необходимости отрегулировать тепловые зазоры в газораспределительном механизме, давление начала впрыска и качество распыла форсунок, угол опережения впрыска, зазоры в электрооборудовании и сцеплении пускового двигателя;
 - очистить детали и зачистить контакты в стартере и генераторе;
 - проверить работу регулятора напряжения и аккумуляторной батареи;
 - выполнить смазочные работы согласно карте смазки.

Сезонное техническое обслуживание включает работы очередного ТО и операции по замене топлива и смазочных материалов (TCM) в соответствии с картой смазки (рисунок 3.1 и таблица 3.1).

▲ – проверить, долить или смазать; ■ – заменить смазку; ЕО – ежесменное техническое обслуживание; СО – сезонное техническое обслуживание;

1 — мост (картеры главной и конечной передач); 2 — гидросистема гидромеханической передачи (с радиатором); 3 — редуктор отбора мощности; 4 — гидросистема погрузочного оборудования и рулевого управления; 5 — система смазки дизеля; 6 — клеммы и наконечники проводов аккумуляторных батарей; 7 — шарниры балансирной рамки; 8 — шарниры гидроцилиндров поворота; 9 — шарниры рамы; 10 — шлицевые соединения карданных валов; 11 — промежуточная опора карданных валов; 12 — шарниры карданных валов; 13 — шарниры погрузочного оборудования; 14 — шарниры гидроцилиндров погрузочного оборудования

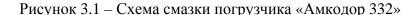


Таблица 3.1 – Перечень топливно-смазочных материалов

Наименование		Наименование и обозначение марки ТСМ	значение марки Т	CM	Масса (объ- Периодич-	Периодич-
точки смазки	Основные	Дублирующие	Резервные	Зарубежные	ем) заправки, ность сме- кг (дм ³) ны ТСМ, ч	ность сме- ны ТСМ, ч
Бак	Топливо дизельное	Не имеется	Топливо	Топливо дизельное	(215)	
топливный	(CTB 1658–2006)		Биодизельное,	EH 590:2004		
	с содержанием серы		соответствующее	с содержанием серы		
	не более 350 мг/кг		требованиям	не более $350 \mathrm{Mr/kr} (0,035 \%)$		
	(0,035 %) сорта		CTB 1658-2006			
	ı		(EH 590:2004),			
			с содержанием			
			метиловых эфи-			
			ров жирных кис-			
			лот от 4 %			
			до 5%. Входной			
			контроль каче-			
			ства биотоплива			
			обязателен			
Пинионония						

Примечания

1 Для умеренных климатических зон рекомендуется применять следующие сорта топлива при температуре окружающей среды до (не ниже): плюс 5 °C — copt A; 0 °C — copt B; минус 5 °C — copt C; минус 10 °C — copt D; минус 15 °C — copt E; минус 20 °C — copt F.

2 Допускается применение топлива с содержанием серы, не превышающим предельную норму, установленную для дизелей уровня Гіег2 (Директива 97/68/ЕС (ІІ ступень) и Правила ЕЭК ООН № 96 (01) – до 2 г/кг (0,2 %).

3 Для сезонного применения в Республике Беларусь рекомендуются следующие сорта дизельного топлива в зависимости от гемпературы окружающей среды. Летний период: сорт В – до 0 °С (не ниже) – с 1 мая по 30 сентября (5 мес.) – по согласованию потребителем; сорт С – до минус 5 °С (не ниже) – с 1 апреля по 30 октября (7 мес.). Зимний период: сорт F – до минус 20 °С (не ниже) с 1 ноября по 31 марта (5 мес.)

Продолжение таблицы 3.1

Наименование точки смазки Картер Лето дизеля Лето	Ottomorno					
смазки	Octional				(объем)	ность
	OCHOBHBIC	Дублирующие	Резервные	Зарубежные	заправки, кг (дм³)	смены ТСМ, ч
лизеля	Летом (устойчивая температура окружающего воздуха выше плюс 5 °C)	ура окружающего в	эздуха выше плю	c 5 °C)	16	250,
	Масла моторные	Масла моторные	Не имеется	Hessol Turbo Diesel SAE15W-40;	(18)	00
	«НАФТАН ДЗ»	M-10ДM,		Essolube XD-3+Multigrate;		
	SAE 10W-40,	TOCT 8581–78		Teboil Super NPD(power);		
	SAE 15W-40,			Royal Triton QLT(U76);		
	SAE 20W-50			Neste Turbo LE;		
Tyl	TY BY 300042199.010-2009;			Mobil Delvac 1400 Super;		
	Лукойл Авангард,			Ursa Super TD (Texaco);		
	SAE 15W-40;			Shell Rimula X SAE 10W-30,		
Лу	Лукойл Авангард Экстра		S	SAE 15W-40; Shell Rimula D Extra		
	SAE 15W-40			SAE 10W-30, SAE 15W-40		
Зим	Зимой (устойчивая температура окружающего воздуха ниже плюс 5 °C;	ура окружающего во	эздуха ниже плю	c 5 °C)		
	Масла моторные	Масло моторное	Не имеется	Shell Rimula Ulttra		
	«НАФТАН ДЗ»	M-8ДМ		SAE 10W-40; Shell Rimula X		
	SAE 10W-40	ΓOCT 8581–78		SAE 10W-30; Shell Helix Diesel		
Tyl	ГУ ВҮ 300042199.010-2009; (до минус 10 °C)	(до минус 10 °C)		Ultra SAE 5W-40; Shell Rimula D		
	«Лукойл Супер»			Extra SAE 10W-30		
	SAE 5W-4					

Примечания

SAE 15W-40 (30); SAE 20W-40 (30); 3има (минус 10 °C и выше) – SAE 20; SAE 10W-40 (30); SAE 15W-40 (30); 3има (минус 20 °C и 1 Применение моторных масел в зависимости от условий эксплуатации: лето (плюс 5 °C и выше) – SAE 30; SAE 10W-40 (30); выше) – SAE 10W-20 (30, 40); SAE 5W-30 (40). 2 Допускается применение моторных масел других производителей, соответствующих классам CF-4, CG-4, CH-4, CI-4 – по классификации API и ЕЗ-96, 499, 5-02 – по классификации АСЕА, вязкости по классификации SAE с температурой окружающей среды на месте эксплуатации дизеля

Продолжение таблицы 3.1

са Периодич-	eм) ность вки, смены	(M^3) TCM, Ψ	5) 1000		(1) 1 pas B	2 года			.5, 2000	гид-	110)				О) 1 раз при	наработке	125 ч,	2 pa3a –	при нара-	ботке	500 ч,	далее	нерез	каждые	1000 ч	
Macca	(объем) заправки,	$\mathrm{K}\Gamma\left(\mathrm{ДM}^{3}\right)$	(2,5)		(30)				(145,	В Т. Ч. ГИД-	5 робак		•		(30)											
I TCM	Зарубежные				MIL-F-5559 (BS 150) (CIIIA);	FL-3 Sort S-735 (Англия)				Shell Tellus 46, Mobil Mobiloil	DTE Oil 25, BP Energol HLP 46 po6ak 110)		Shell Tellus T15, Mobil DTE 11,	BP Energol SHF 15	ıe	Согласно списку	смазочных материалов	ZF TE-ML03				ле	Согласно списку	смазочных материалов	ZF TE-ML03	
Наименование и обозначение марки ТСМ	Резервные	I	еля		Не имеется				плюс 5 °С и выше	Не имеется		плюс 5 °С и ниже	Не имеется		минус 20 °С и вып	Масло моторное	«Лукойл-	Авангард»	SAE 15W-40	API CF-4/SG		минус 40 °С и вып	Не имеется			
Наименование и	Дублирующие		Масло моторное, то же, что и в картере дизеля		Автожидкость	охлаждающая	«Тосол-А40М»	(до минус 40 °C)	При температуре окружающего воздуха от плюс 5 $^{\circ}\mathrm{C}$ и выше	MF-30	TV 38.10150-79	При температуре окружающего воздуха от плюс 5 °C и ниже	АУП	TY 38.1011258-89	При температуре окружающего воздуха от минус 20 °C и выше	Масло	THK ATF IID	TY 0253-043-	44918199-2007			При температуре окружающего воздуха от минус 40 °C и выше	Масло	THK ATF III	TY 0253-043-	44918199-2007
	Основные		Масло моторное, то		Автожидкость	охлаждающая	«Тосол-Э40»	(до минус 40 °C)	При температуре окр	MFE-46B	TY 38.001347–88		BML3	TY 38.101479-86	При температуре окр	Масло марки «А»	Ty 38.301-41-	162–2001 или	масло марки «А»	TY BY	190106343.027-2005	При температуре окр	Масло МГТ	TY 38.1011103-87		
	Наименование точки смазки		Редуктор отбора	мощности	Система	охлаждения	дизеля	(с радиатором)	Гидросистема	рабочего обору	дования, рулево-	го управления и	тормозов		Гидросистема	ГМП	(с радиатором)									

Окончание таблицы 3.1

	H	Наименование и обозначение марок ТСМ	ачение марок Т	CM	Macca	Периодичность
Наименование точки					(объем)	смены ТСМ, ч
смазки	Основные	Дублирующие	Резервные	Зарубежные	заправки, кг (дм³)	
Ведущий мост	TM-4-18	Масло	Не имеется	Shell Dentax G 80W-90,	(28×2)	1 раз при – 125 ч,
	TOCT 17479.2-85	трансмиссионное		Shell Spiral GX 80W-90,		далее через 2000 ч
	(ТНК Транс 80W-90)	ТАп-15В		Mobil Mobilube GX		при применении
	1	ΓOCT 23652–79		85W/90A,		основных масел и
	TM-5-18	Масло		BP Gear Oil GP 90		через 1000 ч при
	ΓOCT 17479.2–85	трансмиссионное				применении дуб-
	(ТНК Транс	ТСп-15К				лирующих масел
	Гипоид 80W-90)	ΓOCT 23652–79				
Шарниры карданных	Смазка	Смазка158М	Не имеется	Shell Dentax G 80W-90,	0,08	250
валов	ИТМОЛ-158Н	TY 38.301-40-25-94		Shell Spiral GX 80W-90,		
	TY BY 1.000 290			Mobil Mobilube GX		
	77.005–2006			85W/90A,		
				BP Gear Oil GP 90		
Шарниры полурам, ба	Литол-24 -	Солидол	Не имеется	Shell Alvania EP2,	1,8 кг на	125
лансирной рамки, погру-	МЛи 4/12-3	Ж-ЖСКа 2/6-2		Shell Retinax EP2,	все точки	
зочного оборудования,	ΓOCT 21150-87	FOCT 1033-79		Mobil Mobilux EP2,	смазыва-	
гидроцилиндров, пальцы				Mobil Mobilux EP3,	ния	
адаптера(при его наличии)				BP Energrease L2,		
Промежуточная опора				BP Multipurpose LS3	0,2	250
карданных валов						
Шлицевые соединения					0,3	250
карданных валов						
Клеммы и наконечники					0,1	500
проводов АКБ						
Петли дверей					0,1	00

Техника безопасности

Перед пуском двигателя необходимо убедиться, что рычаг коробки передач находится в нейтральном положении.

Нельзя выходить из кабины, не выключив скорость. Выполнять операции по техническому обслуживанию следует на специальных площадках. Используемые при техническом обслуживании инструменты и приспособления должны быть исправны. При отвёртывании и затяжке гаек нельзя применять удлиняющие рычаги, пользоваться зубилом, молотком. Воспрещается проверять приводные ремни на вращающихся шкивах.

Порядок выполнения работы

- 1 Определить техническое состояние погрузчика «Амкодор 332» (TO-18) внешним осмотром.
 - 2 Ознакомиться с содержанием и объёмом работ по ТО.
 - 3 Составить отчёт.

Содержание отчета

- 1 Представить информацию о техническом состоянии погрузчика.
- 2 Записать состав работ по ТО и смазке погрузчика.

Контрольные вопросы

- 1 В чем сущность системы обслуживаний и ремонтов машин?
- 2 Периодичность проведения ТО.
- 3 Какие операции выполняются при EO, TO-1, TO-2, CO?
- 4 Назовите основные точки смазки погрузчика.
- 5 Основные сорта смазочных материалов технических жидкостей, применяемых в погрузчике.

4 Лабораторная работа № 4. Регулировка органов управления гусеничных машин

Цель работы: изучить методы и освоить практические приёмы проверки технического состояния и регулировки фрикционных и планетарных механизмов поворота тормозов бульдозера на базе трактора ДТ-75.

Оборудование

- 1 Бульдозер на базе трактора ДТ-75.
- 2 Комплект инструмента.
- 3 Линейка, щуп и др.

Теоретические сведения

Лабораторная работа включает контрольный осмотр фрикционных и планетарных механизмов поворота и тормозов, регулировку и устранение выявленных неисправностей, проверку эффективности их работы.

В механизм управления бульдозером входят рычаги, педали и тяги, при помощи которых управляют механизмами силовой передачи из кабины. На бульдозере применено раздельное управление тормозами.

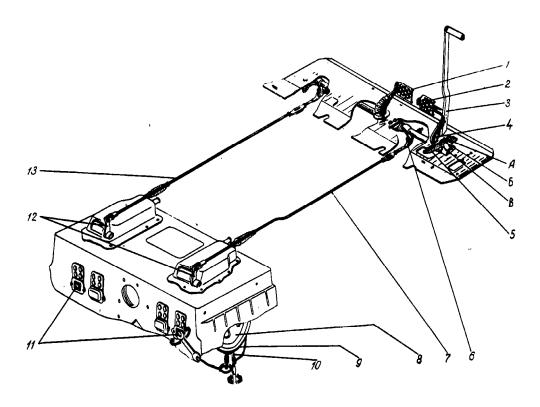
Регулировка хода педалей остановочных тормозов, ленточного тормоза

Ход правой педали 2 (рисунок 4.1) считается отрегулированным правильно, если при ее перемещении от вертикального положения до отказа вперед зуб 4 устанавливается во впадину «Б» сектора 5 и при этом происходит обтягивание лентой шкива остановочного тормоза. Ход педали увеличивается по мере износа колодок лент остановочных тормозов.

Не следует допускать увеличения хода педалей до такой степени, когда зуб 4 (см. рисунок 4.1) при полностью затянутой ленте остановочного тормоза не устанавливается во впадину «А» сектора 5, а проходит дальше вперед.

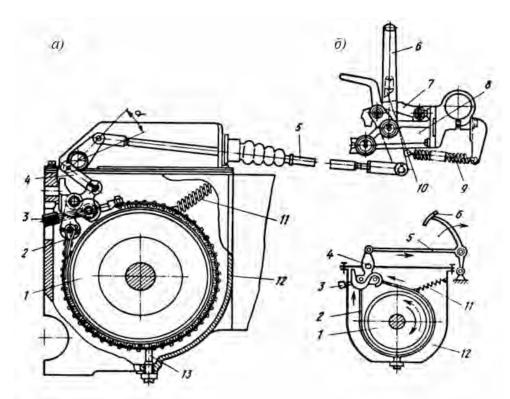
Для восстановления хода педалей проделайте следующее:

- снимите крышки двух крайних регулировочных люков, расположенных на задней стенке корпуса трансмиссии;
 - установите зуб 4 правой педали во впадину «Б» сектора 5;
 - полностью завернуть гайку 11, обтянув тормозную ленту 9 на шкиве 8.


Регулировка хода левой педали 1, не имеющей сектора, производится в той же последовательности, при этом ориентиром должна служить правая педаль, зуб 4 которой установлен во впадину «Б» сектора 5.

Пенточный тормоз гусеничного трактора типа ДТ-75 представлен на рисунке 4.2. Тормозной барабан 1 установлен на валу конечного редуктора. Барабан охватывает тормозная лента 2 с фрикционными накладками. Тормозом управляют с помощью передаточного механизма 4, продольной тяги 5 и тормозной педали 6.

Педаль шарнирно установлена на кронштейне 8 (см. рисунок 4.2) и постоянно отжимается в вертикальное положение пружиной 9. При нажатии на педаль кронштейн поворачивается на угол α и затягивает с помощью передаточного механизма ленту на тормозном барабане. Зазор между лентой и барабаном регулируют гайкой 3. Регулировочный винт 13 удерживает ленту от провисания.



I — педаль левая; 2 — педаль правая; 3 — рычаг; 4 — зуб педали; 5 — сектор правой педали остановочного тормоза; 6 — вилка; 7 — тяга; 8 — шкив остановочного тормоза; 9 — тормозная лента; 10 — винт регулировочный, 11 — гайка регулировочная; 12 — рычаг тормозов; 13 — тяга

Рисунок 4.1 – Регулировка хода педалей остановочных тормозов и их тяг

1 — барабан; 2 — лента; 3 — гайка; 4 — передаточный механизм; 5 — тяга; 6 — педаль; 7 — сектор; 8 — кронштейн; 9, 11 — пружины; 10 — фиксатор; 12 — корпус моста; 13 — винт

Рисунок 4.2 – Ленточный тормоз гусеничного трактора (а) и схема работы (б)

Педаль тормоза в заторможенном состоянии можно фиксировать сектором 7. Для этого при отжатом вперед положении педали 6 сектор поднимают до упора его впадинами в фиксатор 10. В таком положении тормоз фиксирует машину на стоянке, выполняя роль стояночного тормоза.

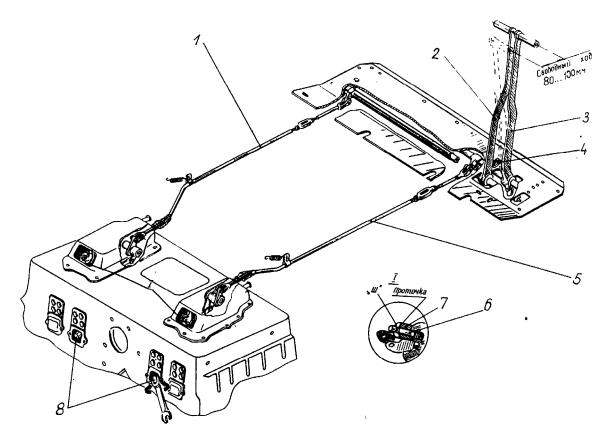
При нажатии на педаль 6 по часовой стрелке оба конца ленты натягиваются, передавая равномерное тормозное усилие на барабан при его вращении в любую сторону.

Тормоза регулируют следующим образом. Педаль правого тормоза фиксируют сектором в заторможенном состоянии. Регулируя длину тяги 5 и затягивая гайку 3, прижимают ленту к тормозному барабану. При возвращении педали назад она должна устанавливаться вертикально. До упора затягивают винт 13 и затем вывертывают его на 1...1,5 оборота. В таком положении фиксируют винт контргайкой. Аналогичным образом регулируют и левый тормоз, устанавливая его педаль вертикально также, как педаль правого тормоза.

Регулировка свободного xoda управления, планетарных рычагов механизмов поворота

Свободный ход, замеренный на концах рычагов 2 и 3 (рисунок 4.3), должен быть в пределах 60...80 мм.

По мере износа накладок лент тормозов планетарных механизмов поворота свободный ход рычагов уменьшается.


Наличие свободного хода рычагов 2 и 3 обязательно проверьте во время движения трактора и не допускайте его уменьшения до величины менее 30 мм.

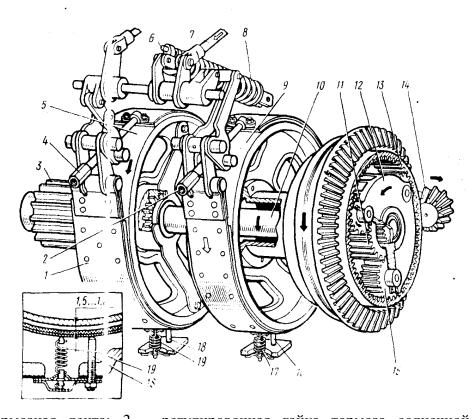
Регулировку свободного хода рычагов при приработанных к шкиву накладках лент производите в следующей последовательности:

- остановите трактор и, не трогая рычагов 2 и 3, снимите крышки регулировочных люков коробок управления и крышки двух средних люков, расположенных на задней стенке корпуса трансмиссии; вращая регулировочную гайку, совместите кольцевую проточку на штоке 6 с плоскостью «Ш» проушины 7, после чего параллельные грани регулировочных гаек 8 расположите вертикально;
- замерьте свободный ход рычагов 2 и 3, который должен быть в пределах 80...100 мм; при замере свободного хода не следует рычаги оттягивать полностью, чтобы не сдвинуть проточку на штоке 6, совмещенную с плоскостью «Ш» проушины 7.

Если замеренный свободный ход меньше или больше допустимого, следует соответственно удлинить или укоротить тяги 1 и 5.

1, 5 — тяга; 2 и 3 — рычаг управления; 4 — упор; 6 — шток; 7 — пружина; 8 — гайка регулировочная

Рисунок 4.3 – Регулировка свободного хода рычагов и тяг тормозов планетарного механизма


Правильность регулировки механизма управления поворотом трактора ДТ-75 и его модификаций *проверяют по свободному ходу рычагов управления*.

При уменьшении хода рычагов управления до 30 мм или увеличении более 100 мм его регулируют, для чего открывают крышки средних люков в задней части корпуса заднего моста, завертывают гайки 2 (рисунок 4.4) до полного прилегания ленты к шкиву, а затем отпускают ее до кольцевой проточки на штоке 6 с кромкой отверстия проушины пружины. После этого винтом регулируют зазор между нижней частью ленты и шкивом. Винт заворачивают до упора и отпускают на один оборот. В заключение проверяют свободный ход рычагов. Если он не соответствует названному выше значению, то его регулируют изменением длины тяги.

Для проверки правильности регулировки остановочных тормозов трактора ДТ-75 и его модификаций снимают крышки двух крайних люков, находящихся на задней стенке корпуса заднего моста, нажимают на педаль тормоза до отказа. Если зуб педали выходит за последнюю впадину сектора, тормоз требует регулирования. Для этого вводят зуб педали в первую впадину и завинчивают регулировочную гайку до отказа. Затем винтом 18 регулируют зазор между нижней частью ленты и шкивом так же, как и управления поворотом.

1 – тормозная лента; 2 – регулировочная гайка тормоза солнечной шестерни; 3 – ведущая шестерня конечной передачи; 4 – регулировочная гайка остановочного тормоза; 5 – шкив остановочного тормоза; 6 – шток-указатель тормоза солнечной шестерни; 7 – тяга рычага управления тормозом солнечной шестерни; 8 – пружина тормоза солнечной шестерни; 9 – шкив тормоза солнечной шестерни; 10 – вал заднего моста; 11 – солнечная шестерня; 12 – водило; 13 – коронная шестерня; 14 – ведущая шестерня главной передачи; 15 – сателлит; 16 – регулировочный винт провисания ленты тормоза солнечной шестерни; 17 – оттяжная пружина тормозной ленты тормоза солнечной шестерни; 18 – регулировочный винт провисания ленты тормоза солнечной шестерни; 19 – оттяжная пружина тормозной ленты остановочного тормоза

Рисунок 4.4 – Регулирование управления поворотом и тормозов бульдозера на базе трактора ДТ-75М

Техника безопасности

- 1 Перед началом запуска двигателя необходимо выключить передачу и затормозить машину.
- 2 Запрещается наматывать перед запуском тракторных пусковых двигателей шнур на руку.
- 3 При отвёртывании гаек нельзя применять удлиняющие рычаги, пользоваться зубилом и молотком.

Порядок выполнения работы

- 1 Изучить методы проверки технического состояния и регулировки фрикционных и планетарных механизмов поворота тормозов бульдозера.
 - 2 Оформить отчёт по лабораторной работе.

Контрольные вопросы

- 1 В чем заключается регулировка механизмов поворота и тормозов?
- 2 Особенности регулировки планетарных механизмов поворота.
- 3 Признаки неисправной работы тормозов и механизмов поворота.
- 4 Как устанавливается нормальный зазор в тормозах ленточного тормоза?

5 Лабораторная работа № 5. Регулировка органов управления колесных машин

Цель работы: изучить методы и усвоить практические приёмы проверки технического состояния и регулировки органов управления колёсных машин и тракторов на примере погрузчика TO-18 («Амкодор 332»).

Теоретические сведения

Работа включает контрольный осмотр органов управления колёсного погрузчика TO-18 («Амкодор 332»), проверку сцепления передних колёс, замер величины люфта рулевого колеса, регулировку рулевого управления, подшипников передних колёс, тормозов.

5.1 Техническое обслуживание гидроруля погрузчика ТО-18

В процессе эксплуатации колёсных машин возникают следующие неисправности систем управления: ослабление крепления картера рулевого механизма сошки и шаровых сочленений тяг; повышенный износ червячной пары, шаровых сочленений тяг; пальца рулевой сошки, подшипников; изменение углов установки колёс; увеличение зазора в подшипниках колёс; неравномерный износ и повреждение покрышек; износ рабочих поверхностей тормозной системы и др.

Уход за рулевым управлением в процессе эксплуатации заключается в периодической проверке люфта рулевого колеса уровня рабочей жидкости в масляном баке, креплении гидроруля, смазке узлов трения, проверке герметичности соединений гидросистемы.

После запуска двигателя при среднем положении золотника гидроруля делать выдержку работы ДВС на малой частоте вращения в течение 2...3 мин.

На номинальной частоте вращения в течение 5 мин проверить герметичность соединений, для удаления воздуха из системы сделать не менее 10 поворотов.

Вал руля должен свободно вращаться с усилием на рулевом колесе не более 50 Н и не иметь люфта в осевом направлении.

5.2 Техническое обслуживание пневмосистемы

После запуска ДВС проверяется герметичность пневмосистемы (рисунок 5.1) по продолжительности её заполнения (не более 2 мин до давления 0,7...0,8 МПа). Регулятор давления проверяется, выпуская воздух до давления, при котором произойдёт включение компрессора (давление включения должно быть 0,53...0,59 МПа).

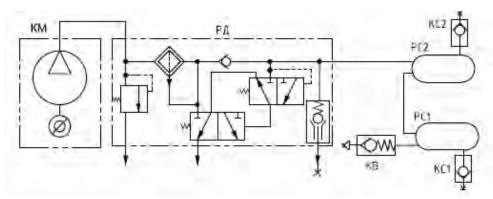


Рисунок 5.1 – Схема пневматическая принципиальная погрузчика «Амкодор 332»

Герметичность тормозного крана проверяется после двух-трех торможений по выходу воздуха через выпускное отверстие.

Особое внимание следует обращать на герметичность соединений трубопроводов и рукавов, т. к. в этих местах чаще всего возникают утечки сжатого воздуха. Места сильной утечки воздуха определять на слух, а слабой – с помощью мыльной эмульсии. Утечку воздуха из соединений трубопроводов устранять подтяжкой или заменой отдельных элементов соединений.

Проверку герметичности проводить при темпераследует туре 5...30 °С.

Падение давления сжатого воздуха в ресиверах при неработающем компрессоре не должно быть более $0.05 \text{ M}\Pi \text{a} (0.5 \text{ krc/cm}^2)$.

При замерзании конденсата запрещается использовать для прогрева открытое пламя. Рекомендуется после полного слива конденсата из ресивера вновь накачать систему воздухом до срабатывания регулятора давления и только после этого остановить дизель.

Для обеспечения нормальной работы пневмопривода необходимо ежедневно сливать конденсат из ресиверов при помощи крана слива конденсата. Скопление большого количества конденсата в ресиверах не допускается.

При замерзании конденсата запрещается использовать для прогрева открытое пламя. Рекомендуется после полного слива конденсата из ресивера вновь накачать систему воздухом до срабатывания регулятора давления и только после этого остановить дизель.

При обслуживании воздушных баллонов и крана слива конденсата следует проверять надежность крепления ресиверов и при обнаружении ослабления подтягивать крепежные детали.

При пользовании краном слива конденсата следует проявлять осторожность. Кран открывать отведением стержня в сторону отверткой или другим инструментом. Нельзя тянуть за стержень крана вниз, т. к. это может привести к разрушению его клапана.

Если после слива конденсата продолжается утечка воздуха из ресивера, то следует несколько раз нажать и отпустить стержень крана.

5.3 Регулировка тормозов

Для обеспечения нормальной работы тормозов свободный ход правой педали должен быть 10...20 мм. При правильно отрегулированном приводе в момент загорания лампы стоп сигнала ход педали должен составлять 50...60 мм. Замеры производятся линейкой. Если свободный ход больше или меньше указанной величины, произвести регулировку, меняя длину тяг привода тормозного крана. Свободный ход менее 14 мм может вызвать неполное растормаживание.

При нажатии на левую тормозную педаль сначала должно происходить включение нейтрали ГМП, а затем, при выборке свободного хода муфты на промежуточном валу управления, левая педаль увлекает за собой правую тормозную педаль, и происходит включение тормозного крана.

При полном ходе левой тормозной педали должен быть полностью выбран ход штока тормозного крана. При этом золотник «быстрой» нейтрали распределителя ГМП не должен ограничивать ход штока тормозного крана. Регулирование произвести изменением длины тяг.

После регулирования законтрить вилки, поставить и зашплинтовать оси.

Правильность регулировки всех приводов управления проверяется при работающем дизеле.

При необходимости выполняется регулировка зазоров между тормозными накладками и тормозными барабанами, проводимая в следующей последовательности:

- вывесить требуемое колесо;
- поворачивать гаечным ключом головку оси червяка регулировочного рычага до тех пор, пока тормозные накладки колодок не начнут прихватывать тормозной барабан при вращении колеса;
- повернуть червяк в обратном направлении на три щелчка. При этом ход штока тормозной камеры не должен превышать 30 мм. Разность хода штоков тормозных камер, установленных на одной оси, не должна быть более 5 мм.

Техника безопасности

- 1 При вывешивании колёс необходимо установить упоры под другие колеса.
- 2 Запрещается поворачивание вывешенных колёс рукой снизу.

Порядок выполнения работы

1 Изучить методы проверки технического состояния и регулировки органов управления колёсных машин и тракторов на примере погрузчика ТО-18 («Амкодор 332»).

2 Оформить отчёт по лабораторной работе.

Контрольные вопросы

- 1 Параметры контроля пневмоколесного хода СДМ.
- 2 Особенности регулировки тормозов с пневмоприводом.
- 3 Как контролируется нормальный зазор в подшипниках передних колёс?
- 4 Основные неисправности системы управления.

6 Лабораторная работа № 6. Выбор моторного масла в зависимости от степени форсирования двигателя

Цель работы: изучить параметры ДВС, влияющие на степень его форсирования; освоить практические приемы выбора моторного масла в зависимости от степени форсирования двигателя.

Выбор марки моторного масла

Работоспособность двигателя внутреннего сгорания зависит от соответствия марки моторного масла степени форсирования ДВС.

Марка моторного масла выбирается в зависимости от типа двигателя по индексу после букв, обозначающих группы по эксплуатационным свойствам. Так, для двигателей с искровым зажиганием указывается индекс 1, а для дизельных — 2. Например, B_1 — для двигателей с искровым зажиганием и B_2 — для дизельных.

Моторное масло в соответствии с ГОСТ 17479.1–85 обозначается тремя группами знаков:

- первая выражается буквами М (моторное);
- вторая цифрами, характеризующими класс кинематической вязкости;
- тремя прописными буквами, указывающими на группу масла.

Класс моторного масла в виде целого числа отражает кинематическую вязкость при температуре 100 °C (таблица 6.1). Дробные классы регламентируют кинематическую вязкость при температуре минус 18 °C (по классу числителя). Причём цифра в знаменателе соответствует среднему значению кинематической вязкости при температуре 100 °C загущённого масла, а цифра в числителе с индексом «з» указывает на класс с загущающей присадкой, она регламентирует вязкость масла при минус 18 °C.

Таблица 6.1 – Зависимость кинематической вязкости масла от класса вязкости и температуры

Vacca provident	Кинематическая вязкость, м	им ² /с (сСт), при температуре
Класс вязкости	плюс 100 °C	минус 18 °C, не более*
	Зимние классы	
33	Не менее 3,8	1 250
43	Не менее 4,1	2 600
53	Не менее 5,6	6 000
63	Не менее 5,6	10 400
	Летние классы	
6	Св. 5,6 до 7,0 включ.	_
8	7,09,3	_
10	9,311,5	_
12	11,512,5	_
14	12,514,5	_
16	14,516,3	_
20	16,321,9	_
24	21,926,1	_
	Всесезонные классы	
3 ₃ /8	7,09,3	1 250
43/6	5,67,0	2 600
43/8	7,09,3	2 600
43/10	9,311,5	2 600
5 ₃ /10	9,311,5	6 000
53/12	11,512,5	6 000
53/14	12,514,5	6 000
63/10	9,311,5	10 400
63/14	12,514,5	10 400
63/16	14,516,3	10 400

Примечание * — устанавливается по номограмме до введения в действие стандарта на определение динамической вязкости при температурах ниже $0\,^{\circ}\mathrm{C}$

В летний период эксплуатации двигателей рекомендуются классы 10, 12, 14, 16, а в зимний — соответственно 6 и 8. Выпускаемые промышленностью зимние масла с загущающими присадками класса 33/8, 43/6, 43/8, 43/10, 53/10, 53/10, 63/14, 63/16.

Так, пуск двигателя без разогрева возможен при использовании масла класса $4_3/6$ при температуре до минус 35 °C, класса $4_3/8$ — до минус 25 °C и $6_3/10$ — до минус 18 °C. Для высокофорсированных двигателей с искровым зажиганием и дизельных двигателей летом целесообразно применять масло вязкостью 12 мм²/с при 100 °C.

Кинематическую вязкость моторного масла при температуре 100 °C на стадии проектирования выбирают на основании зазоров и давления в подшипниках кривошипно-шатунного механизма. Например, для двигателя ЯМЗ-238М рекомендована вязкость масла $8...10 \text{ мм}^2/\text{c}$.

В процессе эксплуатации зазоры в подшипниках увеличиваются, и класс вязкости выбирают по минимально допустимому давлению в системе смазки.

Группа масца по

Так, в прогретом двигателе ЯМЗ-238М (температура охлаждающей жидкости 85...95 °C) при номинальной частоте вращения давление масла находится в пределах 0,4...0,7 МПа и при минимальной соответственно 0,1 МПа.

Если при рекомендуемом большем значении кинематической вязкости давление в системе смазки ниже минимального, то следует проверять систему смазки и подшипники кривошипно-шатунного механизма.

Группа масла по эксплуатационным свойствам (таблица 6.2) обозначается буквами А, Б, В, Г, Д, Е с индексом 1 (для двигателей с искровым зажиганием) и 2 (для дизельных двигателей). Группа масла выбирается в зависимости от степени форсирования двигателя.

Таблица 6.2 – Группы моторных масел по назначению

т руппа	а масла по	
-	тационным	Рекомендуемая область применения
СВО	йствам	
	A	Нефорсированные бензиновые двигатели и дизели
Б	Б1	Малофорсированные бензиновые двигатели, работающие в условиях
		способствующих образованию высокотемпературных отложений и кор-
		розии подшипников
	Б2	Малофорсированные дизели
В	B_1	Среднефорсированные бензиновые двигатели, работающие в услови-
		ях, способствующих окислению масла и образованию всех видов отложений
	B_2	Среднефорсированные дизели, предъявляющие повышенные требова-
		ния к антикоррозионным, противоизносным свойствам масел и склонно-
		сти к образованию высокотемпературных отложений
Γ	Γ_1	Высокофорсированные бензиновые двигатели, работающие в тяжёлых
		эксплуатационных условиях, способствующих окислению масла, образо-
		ванию всех видов отложений, коррозии и ржавлению
	Γ_2	Высокофорсированные дизели без наддува или с умеренным надду-
		вом, работающие в эксплуатационных условиях, способствующих обра-
		зованию высокотемпературных отложений
Д	Д1	Высокофорсированные бензиновые двигатели, работающие в эксплуа-
		тационных условиях, более тяжёлых, чем для масел группы Γ_1
	Д2	Высокофорсированные дизели с наддувом, работающие в тяжёлых
		эксплуатационных условиях или когда применяемое топливо требует ис-
		пользования масел с высокой нейтрализующей способностью, антикор-
		розионными и противоизносными свойствами, малой склонностью к об-
		разованию всех видов отложений
E	E ₁	Высокофорсированные бензиновые и дизельные двигатели, работаю-
	E_2	щие в эксплуатационных условиях, более тяжёлых, чем для масел групп
		Д1 и Д2. Отличаются повышенной диспергирующей способностью, луч-
		шими противоизносными свойствами

Выбор группы моторного масла по эксплуатационным свойствам производится по графику (рисунок 6.1) в зависимости от степени форсирования двигателя. За критерий форсирования двигателя принято произведение средней скорости поршня на среднее эффективное давление.

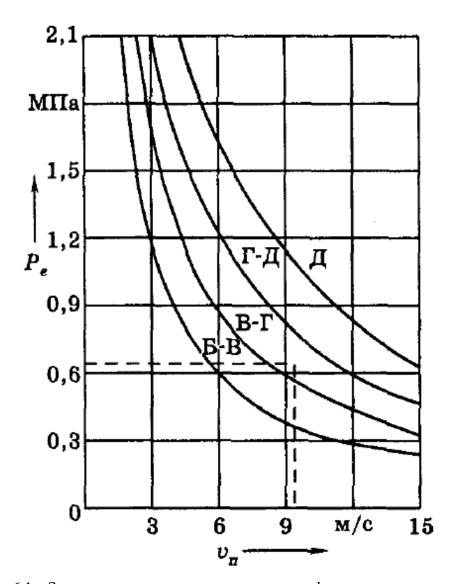


Рисунок 6.1 – Зависимость группы масел от степени форсирования двигателя

Группу масла по эксплуатационным свойствам обозначают буквами A, Б, B, Γ , Д и E.

Выбор группы моторного масла по эксплуатационным свойствам производится по графику (см. рисунок 6.1), для этого по формулам (6.1) и (6.2) на основании экспериментальных замеров определяют среднюю скорость поршня и среднее эффективное давление.

Средняя скорость поршня

$$v_n = s_n \, n \, / \, 30, \tag{6.1}$$

где s_n – ход поршня, м;

n — частота вращения коленчатого вала, мин $^{-1}$.

Среднее эффективное давление

$$P_{e} = \frac{30 \cdot N_{e} \cdot t}{m \cdot V_{h} \cdot n},\tag{6.2}$$

где N_e – эффективная мощность, кВт;

t — тактность двигателя;

m — число цилиндров;

 V_h – рабочий объем одного цилиндра, л.

Соответствие обозначений моторных масел по ГОСТ 17479.1–85 и классификации SAE приведено в таблице 6.3.

Таблица 6.3 – Соответствие классов вязкости моторных масел по ГОСТ 17479.1–85 классификации SAE

Класс	вязкости	Класс вя	зкости
ГОСТ 17479.1-85	SAE J 300 JUN 87	ГОСТ 17479.1-85	SAE J 300 JUN 87
33	5W	24	60
43	10W	3 ₃ /8	5W-20
53	15W	43/6	10W-20
63	20W	43/8	10W-20
6	20	43/10	10W-30
8	20	53/10	15W-30
10	30	53/12	15W-30
12	30	53/14	15W-40
14	40	63/10	20W-30
16	40	63/14	20W-40
20	50	63/16	20W-40

Примеры обозначения моторных масел

M-10 Γ_1 , (где M – моторное масло; 10 – класс вязкости; Γ_1 – масло для высокофорсированных карбюраторных двигателей).

 $M-4_3/8\Gamma_2$, (где M — моторное масло; $4_3/8$ — класс вязкости, указывающий на применение загущающей присадки и регламентирующий кинематическую вязкость не более $2600 \text{ мм}^2/\text{с}$ при температуре минус 18° C; Γ_2 — масло для высокофорсированных дизельных двигателей).

M-8- B_1 , (где M — моторное масло; 8 — класс вязкости; B_1 — масло для среднефорсированных бензиновых двигателей).

M- 6_3 /10-B, где M – моторное масло; 6_3 /10 – класс вязкости; B – универсальное масло для среднефорсированных дизельных и бензиновых двигателей).

 $M-4_3/8-B_2\Gamma_1$, (где M — моторное масло; $4_3/8$ — класс вязкости; $B_2\Gamma_1$ — масло для использования как в среднефорсированных дизелях (B_2), так и в высокофорсированных бензиновых двигателях Γ_{10}).

M-14-Д(цл20), (где M – моторное масло; 14 – класс вязкости; Д – масло для высокофорсированных дизелей с наддувом; цл20 – масло может быть использовано в циркуляционных и лубрикаторных системах смазки и имеет щелочность около 20 мг КОН/г).

 $M-4_3/8-Д(т)$, (где M- моторное масло; $4_3/8-$ класс вязкости; Д- масло для высокофорсированных дизелей с наддувом; T- трансмиссионное масло).

Примеры решения задач по выбору марок моторного масла

Пример 1 — Определить среднюю скорость поршня v_n и среднее удельное давление P_e для двигателя ЯМЗ-238М при $N_e = 176$ кВт и n = 2100 об/мин.

Решение

С технической характеристики двигателя ЯМЗ-238М выбираем значения S = 140 мм, t = 4, m = 8, $V_h = 1,86$.

$$P_e = \frac{30 \cdot 176 \cdot 4}{8 \cdot 1,86 \cdot 2100} = 0,675 \text{ M}\Pi a;$$

$$V_n = \frac{140 \cdot 70 \cdot 0,001}{30} = 9,8 \text{ m/c}.$$

Пример 2 – Выбрать группу масла для двигателя ЯМЗ-238М.

Решение

По результатам расчёта в примере 1 среднее удельное давление $P_e = 0,675$ МПа и средняя скорость поршня $v_n = 9,8$ м/с. Необходимая группа масла находится на пересечении значений P_e и v_n по графику, представленному на рисунке 6.1. Для двигателя ЯМЗ-238М назначается группа В. Возможна работа этого двигателя и на моторном масле группы Γ .

Пример 3 — Выбрать марку моторного масла для двигателя ЯМЗ-238М, работающего в условиях отрицательных температур (до минус 35° C).

Решение

В соответствии с рекомендациями ГОСТ 17479.1–85 назначаем моторное масло марки $1443/8B_2$.

Порядок выполнения работы

- 1 Изучить структуру маркировки и подбора моторных масел.
- 2 Подобрать марку масла для разных моделей ДВС.
- 3 Оформить отчёт по лабораторной работе.

Контрольные вопросы

- 1 Эксплуатационные функции и условия работы моторных масел.
- 2 Эксплуатационные свойства моторных масел.
- 3 Влияние присадок на качество моторного масла. Роль загущающих присадок.
- 4 Зависимость кинематической вязкости от класса вязкости и температуры.

- 5 Рекомендуемая область применения масла в зависимости от степени формирования двигателя и температуры окружающей среды.
- 6 Расход моторных масел. Контроль состояния цилиндро-поршневой группы двигателя по расходу масла.
- 7 Влияние вязкости масла и зазоров в кривошипно-шатунном механизме на давление в системе.
 - 8 Моторные масла и окружающая среда.

7 Лабораторная работа № 7. Диагностика сборочных единиц и систем СДМ

Цель работы: используя данные о результатах диагностирования сборочных единиц, полученных при прохождении дисциплины «Диагностика строительных и дорожных машин», определить их остаточный ресурс и установить рациональные сроки проведения ремонтов.

Теоретические сведения

Остаточный ресурс машины или СЕ определяют на основе изменения ди**агностического параметра** U_i , предельного значения параметра U_{np} и характера изменения параметра состояния U_i в зависимости от наработки. Для решения практических задач изменения параметра с достаточной точностью можно выразить формулой

$$U_i = U_{HOM} \pm K_c \cdot H_i^{\alpha}, \tag{7.1}$$

где $U_{\text{ном}}$ – номинальное значение контролируемого параметра после приработки, единица измерения контролируемого параметра;

 K_c – коэффициент, характеризующий скорость изменения параметра, единица измерения контролируемого параметра/мото-ч;

 H_i – наработка машины в момент измерения параметров, мото-ч;

а - показатель степени, характеризующий интенсивность изменения контролируемого параметра.

Для расчета остаточного ресурса используется только приращение или уменьшение контролируемого параметра относительно начального значения, определяемое по формуле

$$\Delta M_i = \pm K_c \cdot H_i^{\alpha} \,. \tag{7.2}$$

Усреднённые значения показателя α приведены в [3], однако их использование для определения остаточного ресурса конкретной машины приводит к значительным ошибкам, поэтому необходимо находить его фактическое значение для каждого агрегата, СЕ или машины в целом. В реальных условиях эксплуатации значение α определяется по двум замерам диагностического параметра, решая систему уравнений

$$\begin{cases}
\Delta \mathcal{U}_i = K_c \cdot H_i^{\alpha}; \\
\Delta \mathcal{U}_{i+1} = K_c \cdot H_{i+1}^{\alpha},
\end{cases}$$
(7.3)

где i — порядковый номер оценки технического состояния объекта при соответствующей наработке H_i и H_{i+1} .

После преобразований системы уравнений (7.3) получим

$$\alpha_{i} = \frac{\ln\left(\frac{\Delta H_{i+1}}{\Delta H_{i}}\right)}{\ln\left(\frac{t_{i+1}}{t_{i}}\right)},$$
(7.4)

где α_i — показатель степени, характеризующий интенсивность изменения параметра на i-м интервале наработки, соответствующей наработке от H_i до H_{i+1} .

Остаточный ресурс t_{ocm} диагностируемого объекта при известном значении α_i и наработке с начала эксплуатации H_i определяется по формуле

$$t_{ocm} = H_i \left(\frac{\Delta M_{IIP}^{1/\alpha}}{\Delta M_i^{1/\alpha}} - 1 \right). \tag{7.5}$$

При неизвестной H_i остаточный ресурс определяется по двум замерам через интервал наработки ΔH по формуле

$$t_{ocm} = \frac{\Delta H \left(\Delta U_{IIP}^{1/\alpha} - \Delta U_{i}^{1/\alpha}\right)}{\Delta U_{i}^{1/\alpha} - \Delta U_{i-1}^{1/\alpha}}.$$
(7.6)

Для повышения вероятности безотказной работы машины на объекте целесообразно t_{ocm} рассчитывать по двум формулам и принимать меньшее значение.

Зная значения t_{ocm} по всем агрегатам и СЕ, можно определить время постановки машины в ремонт t_{pem} по их минимальному значению t_{ocm} :

$$\begin{cases} t_{pem\ ce} = t_{ocm\ ce}^{\min}; \\ t_{pem\ arperamos} = t_{ocm\ arperamos}^{\min} = t_{pem\ ce}^{\min}; \\ t_{pem\ mauuuhi} = t_{ocm\ mauuuhi}^{\min} = t_{pem\ arperamos}^{\min}, \end{cases}$$

$$(7.7)$$

где $t_{pem\ ce,\ t_{pem\ azperamob}},\ t_{pem\ машины}$ — время ремонта СЕ, агрегата, машины соответственно, мото-ч;

 $t_{ocm\ ce}^{min}$, $t_{ocm\ azperamos}^{min}$, $t_{ocm\ машины}^{min}$ — минимальное значение остаточного ресурса СЕ, агрегата, машины соответственно, мото-ч;

 $t_{\it pem\ ce}^{\rm min}$, $t_{\it pem\ arperamos}^{\rm min}$ — минимальное значение времени ремонта СЕ и машины соответственно, мото-ч.

С учетом совмещения проводимых ТО и ремонтов с диагностикой время постановки машины в ремонт определяется на основании того, что минимальное значение t_{ocm} не будет превышать периодичности ТО или ремонта:

$$t_{pem \, Mauuuhi} = t_{ocm}^{\min} < \Pi_{mop} + \delta, \qquad (7.8)$$

где Π_{mop} – периодичность ТО или ремонтов, мото-ч;

 t_{ocm}^{\min} — минимальное значение остаточного ресурса СЕ, агрегатов или машины в целом, мото-ч;

 δ – возможная погрешность, мото-ч.

Порядок выполнения работы

- 1 Изучить способ определения остаточного ресурса и расчета времени постановки машины или её сборочных единиц в ремонт.
- 2 Используя данные о результатах диагностирования сборочных единиц, полученных при прохождении дисциплины «Диагностика строительных и дорожных машин», определить их остаточный ресурс и установить рациональные сроки проведения ремонтов.
 - 3 Оформить отчёт по лабораторной работе.

Контрольные вопросы

- 1 Что такое остаточный ресурс?
- 2 Как определяется остаточный ресурс?
- 3 Как устанавливаются сроки проведения ремонтов на основании результатов диагностирования?

8 Лабораторная работа № 8. Техническое обслуживание и диагностика электрооборудования СДМ

Цель работы: изучить и освоить практические приёмы проверки состояния электрооборудования на примере свинцово-кислотных аккумуляторных батарей (АКБ) и их эксплуатационного ремонта.

Необходимое оборудование, инструменты, материалы

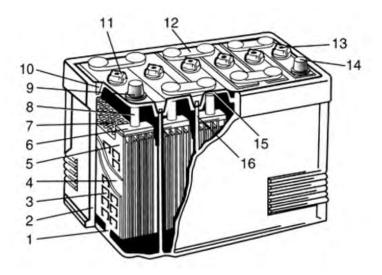
- 1 Стартерная аккумуляторная батарея.
- 2 Нагрузочная вилка.
- 3 Термометр со шкалой до 80 °C.

- 4 Аккумуляторный денсиметр.
- 5 Стеклянная трубка.
- 6 Вольтметр.

Теоретические сведения

Общие сведения об АКБ.

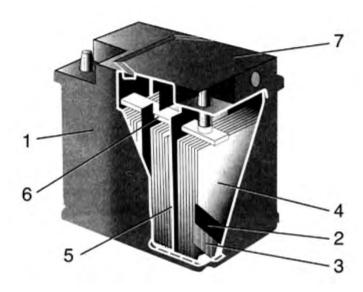
Аккумулятор – электрический прибор, который при зарядке от источников постоянного тока накапливает электрическую энергию, а при разрядке отдает ее потребителям, являясь в этом случае источником постоянного тока.


АКБ служит для пуска двигателя стартером, питания постоянным электрическим током потребителей при неработающем двигателе или при работе его на малых оборотах.

Емкость АКБ измеряется в ампер-часах.

Номинальная емкость АКБ – емкость, отданная АКБ разрядным током 0,05 А до конечного напряжения 10,5 В на выводных клеммах двенадцативольтовой АКБ.

Современные свинцово-кислотные АКБ подразделяются на три вида: с отдельными крышками; с общей крышкой; необслуживаемые.


АКБ состоит из корпуса, отрицательных и положительных электродов (пластин), собранных в полублоки, межэлементных соединений, выводных штырей-борнов. Устройство АКБ с отдельными крышками приведено на рисунке 8.1. Устройство АКБ с общей крышкой приведено на рисунке 8.2.

1 – опорная призма; 2 – корпус-моноблок; 3 – отрицательный электрод; 4 – сепаратор; 5 – положительный электрод; 6 – мостик; 7 – щиток; 8 – борн; 9 – положительный полюсный вывод; 10 - мастика; 11 -пробка; 12 - перемычка; 13 - вентиляционное отверстие; 14 - отрицательный полюсный вывод; 15 - крышка; 16 - перегородка

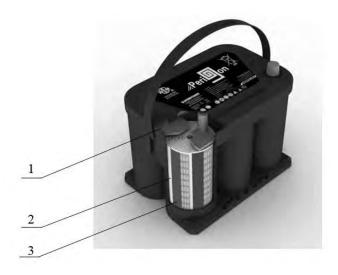
Рисунок 8.1 – Устройство свинцовой стартерной АКБ с отдельными крышками

1 – моноблок; 2 – отрицательный электрод; 3 – положительный электрод; 4 – сепаратор; 5 – перегородка; 6 – межэлементное соединение; 7 – крышка

Рисунок 8.2 – Устройство свинцовой стартерной АКБ с общей крышкой

Электролитом в аккумуляторе служит раствор серной кислоты в дистиллированной воде. При разряде батареи серная кислота электролита взаимодействует с активной массой пластин и превращает ее в сульфат свинца (белого цвета); при этом количество кислоты в электролите уменьшается, а его плотность снижается.

При заряде батареи под действием проходящего через батарею зарядного тока происходит обратный процесс. Сульфат свинца в активной массе положительных пластин превращается в перекись свинца (коричневого цвета); при этом в электролит выделяется серная кислота, и его плотность увеличивается. Доливку дистиллированной воды производят по необходимости 1...2 раза в месяц.


В малообслуживаемых батареях содержание сурьмы в сплаве токоотводов снижено в 2...3 раза по сравнению с традиционными батареями. Ряд производителей к малосурьмяниистому свинцу добавляет различные легирующие вещества, в частности, серебро и селен. Это обеспечивает подзаряд батареи в интервале регулируемого напряжения практически без газовыделения. Вместе с тем скорость саморазряда необслуживаемой батареи снижена примерно в 5...6 раз.

Малообслуживаемая батарея имеет улучшенную конструкцию. Один из аккумуляторных электродов в ней помещен в сепаратор-конверт, опорные призмы удалены, электроды установлены на дно моноблока. До этого электролит, который в традиционных батареях был под электродами, в необслуживаемых батареях находится над электродами. Поэтому доливка воды в такую батарею необходима не чаще, чем 1 раз в 1,5...2 года.

Необслуживаемые батареи отличаются малым расходом воды и не требуют ее долива в течение всего срока службы. Вместо сурьмы в сплаве решеток аккумуляторов используется другой элемент (рисунок 8.3). Например, применение кальция позволило уменьшить газовыделение более чем в десять раз.

Столь медленное «выкипание» большого объема воды можно «растянуть» на весь срок службы аккумулятора, вообще отказавшись от заливных отверстий и доливки воды.

1 – межэлементные соединения, 2 – решетки пластин из свинца, 3 – сепаратор

Рисунок 8.3 – Устройство необслуживаемого герметичного аккумулятора

Необслуживаемые батареи другого типа вместо электродных пластин включают в свой состав электроды, скрученные в плотные рулоны.

Между электродами проложен тонкий сепаратор, пропитанный электролитом. При плотной упаковке электроды не требуют упрочнения сурьмой.

Электролит в таких батареях связан губчатой прокладкой и не вытекает даже при повреждении корпуса батареи. При непродолжительном перезаряде газы, проходя по каналам сепаратора, вступают в реакцию и превращаются в воду. При длительном перезаряде газы, не успев прореагировать друг с другом, выходят через предохранительный клапан. Количество электролита будет в этом случае уменьшаться. Для своевременного предотвращения перезаряда в автомобиле необходимо устанавливать сигнализатор аварийного напряжения. Аккумуляторы, изготавливаемые по данной технологии, получили название «спиральные элементы» (Spiral Cell). Преимуществами этих аккумуляторов являются: большой ток холодной прокрутки, стойкость к вибрациям и ударам, большое число циклов пуска двигателя (в 3 раза больше, чем у традиционных батарей), малый саморазряд (срок хранения без подзарядки – более года). Такие АКБ имеют обозначение VRLA.

Подбор АКБ.

Подбор АКБ ДЛЯ конкретной модели СДМ осуществляется соответствии с рекомендациями изготовителя СДМ или изготовителя АКБ, в параметчтобы исключить недозаряд необходимых, ИЛИ перезаряд АКБ pax, генератором СДМ. Емкость подобранной АКБ не должна отличаться от емкости рекомендуемой более, чем на 10 %.

Основными параметрами при выборе АКБ являются: электрическая (номинальная) емкость, полярность, ток холодной прокрутки, размеры АКБ.

Плотность электролита, заливаемого в батарею, можно изменять в довольно широких пределах, не вызывая изменений химических реакций. Однако, в зависимости от плотности, температура замерзания электролита изменяется. Так, при

 $p = 1,32 \text{ } \Gamma/\text{cm}^3$ $t = -64 \text{ }^{\circ}\text{C}$ $p = 1,20 \text{ } \Gamma/\text{cm}^3$ $t = -25 \text{ }^{\circ}\text{C}$ $p = 1,12 \text{ } \Gamma/\text{ } \text{cm}^3$ $t = -9 \text{ }^{\circ}\text{C}$.

В условиях умеренного климата батарея, разряженная не более чем на 50%, не замерзает. В северных же районах обычная плотность электролита не предотвращает замерзания батареи и зимой ее нужно повышать.

Зависимость плотности электролита от района использования представлена в таблице 8.1

Таблица 8.1 – Зависимость плотности электролита от района использования

	Плотность электролита, г/см ³			
Район	в полностью	заливаемого		
	заряженной батарее	электролита		
Крайне северные с морозами минус 40 °C	1,31	1,29		
То же летом	1,27	1,25		
Северные с морозами не ниже минус 30 °C	1,29	1,27		
Центральные с морозами не ниже минус 15 °C.	1,27	1,25		
Южные районы	1,25	1,23		

Методы заряда.

Заряд аккумуляторных батарей производят от источника постоянного тока. Положительный полюс источника соединяют с положительным выводом батареи, а отрицательный – с отрицательным. В основном, применяются следующие способы заряда:

– заряд при постоянной величине тока.

Рекомендуемая сила тока должна быть 0,1 от номинальной емкости батареи. После сообщения 90 % емкости батареи, которую она отдала при предшествующем разряде, напряжение повышается для разложения воды и в конечный момент достигает 2,7 В. При повышении температуры электролита рекомендуется снизить зарядный ток в 2 раза или прекратить зарядку и дать охладиться электролиту до температуры не выше 30...35 °C. Батарея считается заряженной, если во всех аккумуляторах поддерживается постоянная плотность электролита в течение 2 ч;

- заряд при постоянном напряжении применяется на самих машинах. При этом способе напряжение поддерживается постоянным, а сила тока в зависимости от разряда батареи достигает 1...1,5 ёмкости батареи, а затем уменьшается. В стационарных условиях напряжение должно быть 2,3...2,4 В один аккумулятор;
- ускоренный заряд применяется в случае чрезмерного разряда батарей. Он может производиться токами, равными 0,17...0,2 от номинальной ёмкости.

При этом количество разряда не должно превышать ёмкости батареи, в противном случае сильно снижается срок её службы;

- уравнительный заряд производится токами 0,1 от ёмкости батареи с целью восстановления активных масс электродов всех аккумуляторных батарей. Заряд производится до момента, пока во всех аккумуляторах плотность будет одинакова в течение 3 ч;
- зарядка новой батареи производится спустя 3...6 ч после заливки её электролитом. Конец зарядки контролируется постоянством плотности и напряжения в течение 1...3 ч подряд.

Обслуживание АКБ и контроль технического состояния.

Заряженность залитых электролитом АКБ проверяют измерением напряжения разомкнутой цепи, которое должно быть не менее 12,6 В.

При первом техническом обслуживании СДМ (далее – ТО-1) необходимо выполнить следующие работы по техническому обслуживанию АКБ:

- очистить АКБ от пыли и грязи. Электролит, попавший на поверхность АКБ, вытереть чистой ветошью, смоченной в растворе аммиака или кальцинированной соды (10 %), после чего поверхность насухо вытереть. Очистку и протирку поверхности АКБ производить при ввернутых пробках во избежание засорения электролита;
- визуально осмотреть АКБ выявить механические И ния и дефекты;
- проверить надежность крепления АКБ в гнезде и плотность контакта наконечников проводов с выводами АКБ. При обнаружении окисления наконечников проводов или полюсов выводов АКБ снять наконечники и зачистить их. Наконечники проводов после их монтажа на полюсные выводы смазать техническим вазелином;
 - при необходимости прочистить вентиляционные отверстия;
- проверить уровень электролита во всех аккумуляторах. При необходимости долить дистиллированную воду до уровня выше метки минимального уровня на корпусе АКБ, или на 10...15 мм выше верхней кромки пластин. Контроль уровня электролита в АКБ необслуживаемого типа осуществлять по установленным меткам или изменению цветности индикатора. При втором техническом обслуживании СДМ (далее - ТО-2) необходимо выполнить следующие работы по техническому обслуживанию АКБ:
 - а) выполнить работы, предусмотренные ТО-1;
- б) произвести проверку величины зарядного тока от генератора СДМ, при необходимости устранить неисправность;
 - в) проверить плотность электролита;
- г) установить степень ее заряженности по плотности электролита согласно таблице 8.2

Таблица 8.2 – С	Определение степени за	ряженности АКБ по	плотности электролита
	1160401011110 0101101111 00	p	12101110011110011110

Плотность электролита, приведенная к температуре 25 град, г/см ³						
Полностью заряженная	АКБ заряженная					
АКБ	на 75 %	на 50 %				
1,30	1,26	1,22				
1,28	1,24	1,20				
1,26	1,22	1,18				
1,23	1,19	1,15				

При наличии индикатора заряженности, вмонтированного в крышку АКБ, полнота заряженности АКБ определяется по изменению его цвета.

При понижении уровня электролита в аккумуляторы доливается дистиллированная вода.

Доливать электролит в АКБ запрещается, за исключением тех случаев, когда точно известно, что понижение уровня электролита произошло за счет его утечки. При этом плотность заливаемого электролита должна быть такой же, какую имел электролит в АКБ до утечки.

Основные неисправности АКБ:

- повреждение полюсных выводов АКБ и наконечников стартерных проводов;
- трещины моноблока и крышек аккумуляторов;
- повышенный саморазряд (величина саморазряда, после бездействия АКБ в течение 28 сут при температуре окружающей среды 20 °C не должна превышать 20 % емкости);
- сульфатация электродов (образование крупных труднорастворимых кристаллов свинца (сульфата) на поверхности электродов);
 - преждевременное разрушение электродов;
 - короткое замыкание электродов;
 - пониженная или повышенная плотность электролита;
 - пониженный уровень электролита в аккумуляторах;
- отстающие аккумуляторы (один аккумулятор разряжается быстрее остальных).

При техническом обслуживании АКБ проводится проверка технического состояния.

При вывернутых пробках осуществляется контроль за выделением (или отсутствием) пузырьков газов из электролита. Наличие пузырьков свидетельствует об образовании местных токов в активной массе пластин.

Если установлено, что саморазряд АКБ происходит из-за загрязнения электролита, то такую АКБ необходимо разрядить током, равным 0,1 емкости АКБ, до напряжения 1,1...1,2 В на один аккумулятор. После этого вылить весь электролит, а затем залить аккумуляторы свежим электролитом той же плотности, которую имел вылитый электролит, и полностью зарядить.

В зависимости от конструкции АКБ измеряют уровень электролита стеклянной трубкой диаметром 3...5 мм, а при ее отсутствии пластмассовым или деревянным стержнем.

При отсутствии индикатора измеряется плотность электролита при помощи ареометра.

Плотность электролита в проверяемых аккумуляторах АКБ не должна отличаться более чем на $0.01~\mathrm{г/cm^3}$.

Порядок выполнения работы

- 1 Установить АКБ на стеллаж.
- 2 Визуально проверить состояние аккумуляторных батарей.
- 3 Нагрузочной вилкой измерить напряжение на клеммах аккумулятора под нагрузкой и без нее.
 - 4 Вывернуть пробки из заливочных отверстий крышек аккумуляторов.
- 5 При помощи стеклянной трубки проверить уровень электролита в аккумуляторах АКБ.
 - 6 Замерить температуру и плотность электролита в каждом аккумуляторе.
 - 7 Данные занести в следующую таблицу.

Таблица 8.3 – Шаблон для результатов измерений

Поморожату	Номер аккумулятора					
Показатель		2	3	4	5	6
Уровень электролита, мм						
Температура электролита						
Плотность электролита						

- 8 Оценить техническое состояние АКБ, установить степень ее заряженности.
- 9 Выработать рекомендации по дальнейшей эксплуатации АКБ и при необходимости по его зарядке.

Контрольные вопросы

- 1 Какие Вы знаете показатели контроля электролита аккумуляторных батарей в эксплуатации?
 - 2 Как влияет плотность электролита на температуру замерзания?
- 3 Как изменяется плотность электролита при разрядке аккумуляторных батарей?
- 4 Как назначается величина зарядного тока и определяется окончание зарядки?
 - 5 Как необходимо хранить батареи?
 - 6 Устройство аккумуляторных стартерных батарей.
 - 7 Емкость аккумуляторных батарей.
 - 8 Корректировка плотности электролита.
 - 9 Проверка степени разряженности батареи в эксплуатации.
 - 10 Неисправности батарей, их причины и способы устранения.
 - 11 Из каких основных частей состоит аккумулятор? Каково их назначение?

HINGE COLUMN

- 12 С какой целью в сплав для решеток электродов свинцового аккумулятора добавляется сурьма?
- 13 Какие существуют способы заряда аккумуляторных батарей? Указать их преимущества и недостатки.
- 14 Указать признаки окончания заряда автомобильной аккумуляторной батареи.
- 15 Какие особенности имеют малообслуживаемые и необслуживаемые аккумуляторные батареи? Укажите их преимущества.

Список литературы

- 1 **Максименко, А. Н.** Эксплуатация строительных и дорожных машин: учебное пособие / А. Н. Максименко. Санкт-Петербург: БХВ-Петербург, 2006. 400 с.
- 2 Эксплуатация подъемно-транспортных, строительных и дорожных машин: учебник / А. В. Рубайлов [и др.]; под общ. ред. Е. С. Локшина. Москва: Академия, 2007. 512 с.
- 3 ДМД **02191.7.008–2009.** Рекомендации по совершенствованию технического обслуживания и ремонта дорожно-строительных машин с учетом целесообразности их эксплуатации на любом этапе с начала использования. Введ. 01.03.09. Минск: БелдорНИИ, 2009. 90 с.
- 4 Сборник норм расхода топлива и смазочных материалов для механических транспортных средств, судов, машин, механизмов и оборудования в Республике Беларусь Минск: БелНИИТ Транстехника, 2010. 441 с.
- 5 **ГОСТ 25646–95.** Эксплуатация строительных машин. Общие требования. Введ. 01.07.97. Москва: Изд-во стандартов, 1998. 8 с.
- 6 Дорожно-строительные машины: учебник / Под общ. ред. А. М. Щемелева. – Минск: Технопринт, 2000. – 515 с.
- 7 Погрузчик одноковшовый, фронтальный, пневмоколесный ТО-18 (техническое обслуживание и инструкция по эксплуатации). Минск: Полымя, 1987. 290 с.
- 8 Погрузчики фронтальные одноковшовые (АМКОДОР 332В, АМКОДОР 332В4, АМКОДОР 342В, АМКОДОР 342В, АМКОДОР 342В-01, АМКОДОР 342В4, АМКОДОР 352, АМКОДОР 352-10). Погрузчики торфа (АМКОДОР 342Р, АМКОДОР 342Р-01, АМКОДОР 342Р4, АМКОДОР 342Р4-01). Погрузчики универсальные (АМКОДОР 332С4, АМКОДОР 332С4-02, АМКОДОР 342С4, АМКОДОР 342О4-02, АМКОДОР 352С, АМКОДОР 352С-01, АМКОДОР 352С-02, АМКОДОР 352С-10) Лесопогрузчики фронтальные универсальные (АМКОДОР 352Л, АМКОДОР 352Л-01, АМКОДОР 352Л-02): руководство по эксплуатации 342В.00.00.000РЭ / Л. Л. Гуменников [и др.]. Минск: Амкодор, 2010. 286 с.
- 9 Мосты ведущие серии 342. Руководство по эксплуатации / С. А. Карпыза, Л. А. Самущенко, Л. А. Сиротина. Минск: Амкодор, 2012. 36 с.

- **ГОСТ 17479.2–85**. Масла трансмиссионные. Классификация и обозначение. Москва: Изд-во стандартов, 1985. 8 с.
- **ГОСТ 23652–79**. Масла трансмиссионные. Технические условия. Классификация и обозначение. Москва: Изд-во стандартов, 1979. 16 с.
- **ГОСТ 1033–79**. Смазка, солидол жировой. Технические условия. Классификация и обозначение. Москва: Изд-во стандартов, 1979. 14 с.
- **СТБ 1658–2006**. Топлива для двигателей внутреннего сгорания. Топливо дизельное. Технические требования и методы испытаний. Технические условия. Классификация и обозначение. Москва: Изд-во стандартов, 2006. 10 с.
- 14 Трактор ДТ-75М. Техническое описание и инструкция по эксплуатации 88.00.001 ТО. Волгоград: Тракторный завод им. Ф. Э. Дзержинского, 1980. 297 с.
- **Родичев, В. А.** Тракторы и автомобили / В. А. Родичев, Г. И. Родичева. Москва: Агропромиздат, 1986. 251 с.
- **Бельских, В. И.** Диагностика технического состояния и регулировка тракторов. Москва: Колос, 1973. 495 с.
- **ГОСТ 17479.1-85.** Обозначение нефтепродуктов. Масла моторные. Москва: Изд-во стандартов, 2000. 8 с.
- **Максименко, А. Н.** Производственная эксплуатация строительных и дорожных машин: учебное пособие / А. Н. Максименко, Д. Ю. Макацария. Минск: Вышэйшая школа, 2015. 390 с.
- **Максименко, А. Н.** Техническая эксплуатация строительных и дорожных машин: учебное пособие / А. Н. Максименко, В. В. Кутузов. Минск: Вышэйшая школа, 2015. 304 с.
- **Рынкевич, С.** А. Проектирование, эксплуатация и диагностика мобильных машин: монография / С. А. Рынкевич, В. В. Кутузов. Могилев: Белорус.-Рос. ун-т, 2016. 224 с.
- **ТКП 298–2011.** Стартерные аккумуляторные батареи. Нормы и правила обслуживания. Минск: Министерство транспорта и коммуникаций Республики Беларусь, 2011. 35 с.

