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INVESTIGATION OF THE DISCONTINUITY STRUCTURE
IN THE PROBLEM OF A STREAM AT AN INCLINE

M.E. Eglit, Yu.A. Drozdova, A.E. Yakubenko

In this paper we give an example which demonstrates that when constructing a solution
with discontinuities, it is necessary to consider the structure of these discontinuities. If the
discontinuities structure does not exist then the constructed solution is not valid.

Let us consider a �ow at an incline, e.g., a snow avalanche. The continuity and momen-
tum equations for the �ow thickness (depth) h and depth-averaged velocity v are
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Here x is coordinate down the slope, θ is the slope angle, g � gravity acceleration, τ(v, h) �
friction at the bottom per unit area. The equations (1) are valid in the domain 0 6 x 6 Xf ;
Xf (t) is the coordinate of the leading edge of the �ow. In front of the �ow there is a static
layer of material (e.g., snow). At the leading edge this material is destructed and entrained
by the �ow � the leading edge is a destruction front. Mass and momentum conservation
laws at the destruction front are
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Here w is the front speed, h̄, v̄ are the depth and velocity at the front, h0, σ∗ are the
depth and compression strength of the layer entrained by the �ow. During motion the length
of the stream increases. At large time the stream can be conventionally divided into two
zones: a long zone I with a large longitudinal scale, and a relatively narrow zone II adjacent
to the destruction front [1]. In zone I it is possible to neglect derivatives over x and t in
the momentum equations (kinematic waves theory [2]) to obtain sin θ − τ(v, h)/(ρh) = 0.
This implies that v = V (h). Substituting this relation into continuity equation reduce the
problem to solution of one equation for h
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In this approach, a narrow zone II is replaced by a kinematic jump. The only conservation
law on this jump is

h1(w − V (h1)) = h0w (4)

where h1 is the �ow depth behind the kinematic jump. The Lax evolutionarity condition
for this jump is a(h1) > w. The equations (3), (4) together with the initial conditions and
the evolutionarity condition for the jump, are su�cient to calculate the �ow front speed
and the distributions of velocity and depth in zone I. However, to be sure that the obtained
solution is valid we should prove the existence of solution in zone II which describes the
structure of the kinematic jump. The �ow parameters in zone II are governed by equations
(1), (2); the solution should be stationary in coordinate system moving with the velocity
w; it should be possible to link the solutions in zones I and II. It was found that an answer
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depends on the value of the strength σ∗. If σ∗ > σ̂ then the structure of the kinematic
jump for which w satis�es (4) exists. If σ∗ < σ̂ then the structure of the kinematic jump
exists only at h1 = h̄. The latter is a condition at the kinematic jump additional to (4).
The evolutionarity condition now reads w > a(h1). It means that the solution obtained
without investigation of the jump structure is not valid at σ∗ < σ̂.
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