УДК 534:535

НЕКОТОРЫЕ ОСОБЕННОСТИ РЕШЕНИЯ ОБРАТНОЙ ЗАДАЧИ СПЕКТРАЛЬНОЙ РЕФЛЕКТОМЕТРИИ МДП-СТРУКТУР

И. У. ПРИМАК, А. В. ХОМЧЕНКО Белорусско-Российский университет Могилев, Беларусь

Численное моделирование решения обратной задачи определения толщин и комплексных диэлектрических проницаемостей МДП-структур на основе метода спектральной рефлектометрии (в измерительной схеме интерферометра Майкельсона) продемонстрировало, что данная задача становится некорректной в практически важном диапазоне толщин слоев. В этом сообщении рассмотрены возможности регуляризации обратной задачи. Запишем регуляризирующий функционал S некорректной обратной задачи, который представляет собой сумму функционала невязки и стабилизирующего функционала с неизвестным параметром α [1]:

$$S = S_0 + \alpha P, \ S_0(\mathbf{z}) = \sum_{i=1}^n \left(R_i^e - R(\lambda_i, \mathbf{z}) \right)^2, \ P = \left| \mathbf{z} - \mathbf{z}^0 \right|, \ \mathbf{z} = (z_j), \ \mathbf{z}^0 = (z_j^0), \ j = \overline{1, \nu}, \ (1)$$

где $S = S(\mathbf{z})$, $R_i^{\rm e}$ и $R(\lambda_i, \mathbf{z})$ — измеренные и рассчитанные значения коэффициентов отражения от многослойной структуры для длины волны излучения λ_i , \mathbf{z} — вектор параметров модели структуры, которые необходимо определить, \mathbf{z}^0 — вектор начальных приближений этих параметров.

Определение вектора параметров **z** осуществляется при минимизации функционала (1). При этом параметры определяются с погрешностями, обусловленными погрешностями регистрации коэффициента отражения, а также использованием стабилизирующего функционала:

$$\Delta_j = \Delta_j^c + \Delta_j^s, \ j = \overline{1, \nu}.$$

Оценим систематические погрешности вызванные использованием стабилизирущего функционала, полагая $\alpha \ll 1$

$$\Delta_{j}^{c} \simeq \alpha \partial z_{j} / \partial \alpha = -\alpha \sum_{k=1}^{v} \left(M_{kj} \right)^{-1} \left[z_{k}^{\prime} - z_{k}^{0} \right], \ j = \overline{1, v},$$
 (2)

где $\left(M_{kj}\right)^{-1}$ – обратная матрица для матрицы

$$M_{kj} = \sum_{i=1}^{n} \frac{\partial R}{\partial z_{k}} (\lambda_{i}, \mathbf{z}') \frac{\partial R}{\partial z_{i}} (\lambda_{i}, \mathbf{z}') + \alpha \delta_{kj}, \ k, j = \overline{1, v},$$

 $\mathbf{z}' = (z_j')$ — решение задачи минимизации функционала (1) при заданном значении α , δ_{kj} — символ Кронекера.

Точность формул (2) тем выше, чем ближе решение \mathbf{z}' к точному решению (т. е. к решению в отсутствии погрешностей). Случайные погрешности определим как

$$\Delta_{j}^{s} = \sum_{k=1}^{\nu} \left(M_{kj} \right)^{-1} \left[\sum_{i=1}^{n} \Delta R_{i} \frac{\partial R}{\partial z_{k}} (\lambda_{i}, \mathbf{z}') \right], \quad j = \overline{1, \nu},$$

где ΔR_i – погрешности регистрации коэффициента отражения для заданной длины волны λ_i .

Отметим, что модули погрешностей Δ_j^s ($j=\overline{1,v}$) с уменьшением α монотонно возрастают и достигают максимума при $\alpha=0$. В тоже время, модули погрешностей Δ_j^c ($j=\overline{1,v}$) зависят от α немонотонно. Данные величины достигают минимумов при нескольких значениях α (среди них $\alpha=0$). Очевидно, имеет смысл выбирать оптимальное значение α_{opt} среди этих значений (исключая случай $\alpha=0$, т. к. в этом случае получим максимум случайной погрешности). При этом, в соответствии с [1] практично осуществлять поиск α_{opt} , анализируя величину $\left|\Delta^c\right| \simeq \left|\alpha\partial\mathbf{z}/\partial\alpha\right|$, где $\Delta^c = \left(\Delta_j^c\right)$ ($j=\overline{1,v}$).

В целях оценки эффективности предлагаемого подхода выполнено численное моделирование отражения света от структур SiO_2 -Au-Si с последующим решением регуляризированной обратной задачи. Рассмотрено отражение света в диапазоне длин волн от 300 до 800 нм. Экспериментальные данные моделировались добавлением к расчетной зависимости коэффициента отражения погрешностей, распределенных по нормальному закону со средним квадратическим отклонением 0,005. Зависимости диэлектрической проницаемости SiO_2 , Au и Si от длины волны определялись на основе дисперсионной формулы Коши, аналитической модели критических точек [2] и данных [3] соответственно. Это позволило сформулировать шестнадцатипараметрическую модель многослойной структуры, параметры которой вычислялись при минимизации функционала (1).

Регуляризация обратной задачи, поиск оптимального значения α_{opt} продемонстрировали возможность снижения погрешностей определения параметров слоев более чем в 3 раза. В частности, слои SiO_2 и Au с толщинами соответственно 100 и 30 нм определялись с погрешностями ~ 1 % по толщине и менее 10 % по диэлектрической проницаемости.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Тихонов, А. Н.** Методы решения некорректных задач / А. Н. Тихонов, В. Я. Арсенин. Москва: Наука, 1979. 285 с.
- 2. **Etchegoin, P. G.** An analytic model for the optical properties of gold / P. G. Etchegoin, E. C. Le Ru, M. Meyer // J. Chem. Phys. 2006. № 125. P. 1–3.
- 3. **Polyanskiy, M. N.** Refractive index database [Electronic resurce] / M. N. Polyanskiy. Mode of acces: https://refractiveindex.info. Data of access: 10.02.2019.

