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Abstract: The paper describes the design and examines the principle of 
operation of the transmission with intermediate rolling elements. The 
transmission has small dimensions in the radial direction and good assembly 
properties. It comprises compound rollers, and periodic slots are formed by 
several cams. The number of rolling elements involved in the load transfer has 
been found. The dependences for strength calculation of the transmission and 
recommendations on the choice of its basic geometric parameters are given. 
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1 Introduction 

Transmissions with intermediate rolling elements (TIREs) are a special class of 
mechanisms in which the load is transferred by a system of balls or rollers. A large 
number of different designs, which can be grouped according to certain characteristics 
(Stanovskoy et al., 2003), in particular, according to the direction of movement of mass 
centres of rolling elements in relative motion during operation of the transmission, have 
been developed. In the TIREs with axial movement of these mass centres their motion 
paths are located on cylindrical surfaces, so these TIREs can be called cylindrical 
transmissions or transmissions of cylindrical type. The TIREs of this group have a 
number of advantages: small dimensions in the radial direction, full dynamic balance, and 
high load capacity. 

The task to develop calculation methods for these mechanisms is important, as in 
most known works the issues of strength analysis have not been considered. The structure 
and the fundamentals of kinematics of transmissions of cylindrical type are shown in 
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Lehmann (1981). In Terada et al. (2007), the complex design of the cylindrical 
transmission with rolling elements and additional intermediate bodies is examined, its 
kinematic characteristics and the load design are analysed. In Bara (2006), the dynamic 
loads acting in the ball mechanism are investigated additionally. 

Fundamentals of these mechanisms theory and some issues of estimation of strength 
of cylindrical transmission parts are given in Ignatishchev (1983). The FEM analysis of 
speed reducers with TIREs of cylindrical type is given in Nam et al. (2013). However, in 
Lehmann (1981), Terada et al. (2007), Bara (2006), Ignatishchev (1983) and Nam et al. 
(2013) intermediate rolling elements in the transmissions under consideration are mainly 
balls. Small lengths of contact lines due to the limited dimensions of the ball reduce the 
load capacity of transmissions. The TIREs with solid rollers are examined in Pashkevich 
and Gerashchenko (1992). Like balls, solid rollers are simultaneously in contact with 
several parts, which inevitably results in their slipping in relation to one or more surfaces. 
Therefore, the disadvantage of most known mechanisms with intermediate rolling 
elements is their low efficiency. 

Besides, there are technological difficulties in manufacturing periodic slots on inner 
cylindrical surfaces, and there is no possibility of wear compensation of these slots. We 
studied the design of the transmission (Lustenkov, 2010b), which is specific due to the 
use of rollers consisting of several components. The rollers move along the slots, each of 
them is made up of several parts. The objective of the research was to develop 
fundamentals of strength calculation of the parts of the transmission under consideration 
and to determine its basic geometric parameters based on the conditions of strength. 

2 Transmission design and operation 

The transmission is made up of two cams, the inner 1 and the outer 3 ones, and closed 
periodic slots are made on their cylindrical surfaces (Figure 1). The slots can be made on 
a solid cam (cam 1) and can be formed by face surfaces of two cams (cams 3). The 
rolling elements 4 move on these slots and along the axial slots of the cage 2. The inner 
cam is connected with the driving shaft 5, the cage is connected with the driven shaft 6, 
and the outer cams are fixed in the casing 7. 

Figure 1 Design of TIREs of cylindrical type (see online version for colours) 

 

The inner and outer cams and the cage form a three-link mechanism with the kinematics 
which is similar to the kinematics of a planetary gear. One link is a driving one, the 
second link is a driven one, and the third link is a fixed one during reducer (multiplier) 
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operating mode. Transmission ratio and speeds of the shafts can be determined by the 
Willis formula: (ω1 – ω2) / (ω3 – ω2) = –Z3 / Z1, where ω1, ω2, ω3 represent angular 
velocities of the inner cam (link 1), the cage (link 2) and the outer cams (link 3) 
respectively; Z1 and Z3 are the number of periods of periodic slots on the inner and outer 
cams respectively. 

The rolling elements are made as three-piece rollers. During operation of the 
transmission each of the three components of the roller is in contact with the 
corresponding working surface of the TIREs main links. Thus, the slipping friction is 
replaced by the rolling resistance having considerably lower energy losses. Due to the use 
of outer two-piece cams, mechanism adjustment and wear compensation of their working 
surfaces can be done by gradual movement of one of the cams along the transmission 
axis with a special adjustment mechanism. 

3 Determining the number of load-transmitting rollers and effective forces 
in transmission 

Let us see the diagram of passage of a rolling element (a cutter during cutting the slot) of 
the top of the slot by unfolding a fragment of the multi-period slot on plane (Figure 2). 

Figure 2 Diagram of periodic slot segment formation 

 

The centre of the rolling element 1 moves along the central curve 2. The central curve 
can be described by different functions. The most frequently used curve is a sinusoidal 
one which is described on plane (Figure 2) by the equation: z1(3) = A · sin(Z1(3) · s / R), 
where A is the amplitude of the central curve, R is the radius of the circle forming the 
cylindrical surface on which the mass centres of the rollers are located, the indices 1 and 
3 are the indices of the central curve of the slot of the inner and the outer cams 
respectively. 

To simplify subsequent calculations let us consider a sectional helical central curve. 
When the mass centre of the rolling element moves along the section of the curve J1B1, 
the rolling element itself can theoretically be in contact with both sides of the slot 3  
(two-sided contact). According to the TIREs theory (Lustenkov, 2010b), in these sections 
the load is transmitted by the roller (ball). At the point B1, when it moves from left to 
right (Figure 2), the contact with one side of the slot is broken and in the sections B1C 
and СB2 the rolling element makes a no-load run. 
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At the same time, the total load on the transmission links is redistributed to the rolling 
elements, their centres of mass being on the working sections of the central curve. The 
parameter Kp, which is equal to the ratio of the length of working sections of the central 
curve to its total length, will determine the number of the rolling elements, whose mass 
centres are on the working sections of the central curve, i.e., which transmit the load, in 
relation to their total number. This parameter is determined by the following formula: 

( ) ( )3 3tan sin
1 s m mo

p
rL L

K
L A

⋅ ⋅−
= = −

α α
 (1) 

where L is the overall length of the central curve, Lo is the total length of the sections of 
the central curve on which the rolling element makes a no-load run (B1С), rs is the radius 
of the rolling element, α1(3)m is the average value of the slope angle of the one-period 
(multi-period) curve. 

( )1(3) 1(3)arctan 2 ( )m Z A π R= ⋅ ⋅ ⋅α  (2) 

The parameter Kp must be determined for the curve with a greater number of periods, in 
the case under consideration, for the slot formed by the outer cams (Z3 > Z1), since it has 
longer no-load sections. The average number of rolling elements, transmitting the load, 
can be estimated according to the following dependence: np = Kp · n, where n is the total 
number of the rolling elements (n = Z1 + Z3). 

The load capacity of the transmission and the strength of its parts are determined by 
the value of the normal force N2, resulting from the contact of rolling elements with 
working surfaces of the cage and by the values of the forces N1 and N3, acting in the 
contact of rolling elements with the slots of the inner and outer cams respectively. 

The force exerted on the side surface of the cage groove by one rolling element can 
be determined by the following dependence: 

2
2

p n

M
N

R n K K
=

⋅ ⋅ ⋅
 (3) 

where M2 is the torque on the output shaft, Kn is the factor of uneven load distribution 
along the power flows (depends on the accuracy of parts manufacturing). 

In Lustenkov (2010a), the TIREs of spherical type are examined, and the forces 
acting on the main links of the transmission on the basis of the solutions of the system of 
equations of equilibrium of the transmission major links by using the principle of 
d’Alembert are determined. According to the given method, the values of the forces 
acting in the transmission under examination were obtained: 
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where f is the friction coefficient in the contacting pairs, based on the consideration of the 
processes of slipping and rolling. 

4 Transmission strength calculations 

Initial given data for the calculation are the maximum diameter of the reducer casing 
Dmax, the transmission ratio u, the transmitted torque M2, the transmission operation 
modes, the materials and heat treatment of parts, the type of the lubricant used. The 
values of the friction coefficient are taken according to the reference data. 

The basic geometric parameters of the transmission are pre-calculated. The radius 
value R is taken on the basis of the Dmax value. The slot on the inner cam is generally 
made as a one-period curve (Z1 = 1). The number of the periods of the slot formed by the 
outer cams and the number of the rolling elements are determined by the transmission 
ratio value: Z1 = 1, Z3 = u – 1, n = u. The amplitude of the period curves A is determined 
on the basis of the condition of the least friction losses (Lustenkov, 2010b). 

After determining the values of the forces according to formulas (2) to (4), which act 
on one roller, the torques acting on the TIREs cams are determined. The minimum 
diameter of the input shaft D1min is calculated based on the condition of torsional strength. 
On the basis of the known diameters D1min and Dmax, the length of the roller, the inner and 
outer diameters of the cams, and, accordingly, the lengths of the contact lines are 
determined. 

Let us consider the algorithms for the checking calculations of the TIREs parts. The 
compound roller of the TIREs under consideration comprises a rod with a diameter of d0s 
and three bushings, one of which is made solid with the rod. The bushings with outer 
diameters of cylindrical surfaces dsj (the index j is the index of the link, j = 1 … 3) are in 
contact with respective main links of the transmissions. By analogy with the calculation 
of chain gears, bearing and shearing stress of the rods of the compound rollers of TIREs 
must be calculated. Bearing stress is determined by the following formula: 

2
j

sj
stj sj rj

N
σ

k r l
=

⋅ ⋅ ⋅
 (6) 

where kstj is the diameter factor of the roller rod (kstj = d0s / dsj), lrj is the length of the 
contact lines during interaction of the roller with the jth part of the transmission, rsj is the 
outer diameter of the roller bushing (rsj = 0.5.dsj). 

The calculations according to formulas (2) to (4) show that the reaction N2 has a 
maximum value, therefore the bearing stress is further determined in the contact of the 
roller bushing with the cage slot. Shear stress (with two shear surfaces) is determined 
according to the following formula: 

2
2 2

2 22N
st s

N
τ

π k r
=

⋅ ⋅ ⋅
 (7) 
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At the stage of transmission design it is necessary to determine the diameters of the roller 
bushings. Let us express the maximum allowable force N2 from formula (6), with the 
existing bearing stress σs2 being replaced with permissible stress [σs]. Further, let us 
substitute the right side of dependence (2) for N2 in this expression, the parameter Kp 
being replaced with equation (1). We will obtain a quadratic equation with a variable rs2. 
It can be represented as a function: 

( ) 2
2 1 2 2 2σ s s sfs r S r r S= ⋅ + −  (8) 

where S1 and S2 are the coefficients of the quadratic equation. 

( ) ( ) [ ]( )1 3 3 2 2 2tan sin , 2m m n r st sS A S M R n K l k σ= − ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅α α  (9) 

Having done similar substitutions in expression (7), which determines the shear stress, 
and having made transformations, we obtain a cubic equation. Let us represent it in the 
form of a function as well: 

( ) 3 2
2 1 2 2 3τ s s sfs r S r r S= ⋅ + −  (10) 

where S3 is the coefficient of the cubic equation. 

[ ]( )2
3 2 2 n st NS M R n K π k τ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  (11) 

where [τN] is the permissible shear stress. 
Let us represent the solution of the resulting quadratic and cubic equations 

graphically. Figure 3 shows a graph which allows determining the rational value of the 
outer diameter (radius) of the roller bushing which is in contact with the cage slots for the 
transmission with the following geometric and other parameters: R = 40 mm, А = 22 mm, 
Z1 = 1, Z3 = 4, u = 5, lr1 = 4.45 mm, lr2 = 4.5 mm, lr3 = 5.6 mm. 

Figure 3 Graph for determining the minimum radius of the roller (see online version for colours) 

 

The material used in all parts is tempered steel 45 (S 45 C). Thus: [σs] = 25 MPa,  
[τN] = 72 MPa (Ivanov and Finogenov, 2006). The factor Kn is assumed to be 0.8, and the 
friction coefficient f = 0.05. The torque on the driven shaft M2 = 63 Nm. At the rotation 
frequency of 1,000 r/min the transmitted power (ignoring the transmission efficiency) is 
1.32 kW. 
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The cubic equation represented by function (10) has the solutions rs2
(1) and rs2

(2), and 
the quadratic equation, represented in the form of function (8) has the solutions rs2

(3) and 
rs2

(4). The required value of the radius is within the intervals [rs2
(1), rs2

(2)] and [rs2
(3), rs2

(4)]. 
The second interval is the determining one, as it is located inside the first one. The 
universality of this conclusion is proved by numerical calculations. The ratio rs2

(3) / rs2
(1) 

for the transmission with the above parameters when the torque on the driven shaft M2 
changes in the range 40 … 100 Nm, is 2.0 … 2.4; with R = 60 mm and other parameters 
being equal, this range is 1.7 … 2.1. This shows that the minimum radius rs2 should be 
determined from the bearing stresses. It is necessary to choose the minimum value within 
the interval [rs2

(3), rs2
(4)], since the actual bearing stress is equal to allowable ones, and the 

parameter Kp is maximal. 
It means that the material of the roller bushings will be used most efficiently and the 

acting loads will be minimal under these conditions. The required solution is one of the 
real roots of the quadratic equation, represented by function (8): rs2

(3). Thus, the minimum 
radius of the roller is calculated by the formula: 

( ) ( )
[ ]

( ) ( )

2 3 3

2
2

3 3

2 tan sin
1 1

2 tan sin

m m

n r st s
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m m
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R A n K l k σ
r

⎛ ⎞⋅ ⋅ ⋅
⎜ ⎟⋅ − −⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠=

⋅ ⋅

α α

α α

 (12) 

The contact strength calculation is based on the transformed Hertzian formula for 
determining maximum contact stress for the contact of flat and cylindrical surfaces of 
steel parts [Birger et al., (1993), p.531]. The calculation of the maximum contact stress 
σHj, MPa, in each of the contacts of the rolling elements and the condition of the contact 
strength of the TIREs under consideration are written as follows. 

( ) [ ]max191, 67 , МPа, max , 1 3j
Hj H Hj H

sj rj

N
σ σ σ j σ

r l
= ⋅ = = ≤

⋅
…  (13) 

where [σH] is permissible contact stress. 
The values of the radii of the bushings and the lengths of the contact lines (rsj, lrj) in 

expression (13) should be in millimeters. 
The minimum radii of the outer surfaces of the roller bushings rsj, mm, based on the 

condition of the contact strength are determined by the formula: 

[ ]2
36, 74 j

sj
H rj

N
r

σ l
= ⋅

⋅
 (14) 

The minimum radius of the outer surface of the roller bushing, which is in contact with 
working surfaces of the cage slots in the transmission with the above mentioned 
geometric parameters and loading parameters, is limited by the allowable contact stress 
and is determined in Figure 3 by the function fssσH(rs2). 

The flexural stress calculation of the lobes of the outer cams for the TIREs is a 
checking one. If we neglect the curvature of the lobes in a plane which is perpendicular to 
the axis of the transmission, the known design model (Ivanov and Finogenov, 2006) of a 
gear tooth can be used for flexural strength calculation. Let us consider the lobe as a 
cantilever beam. We take the section at the lobe base where rounding begin (Figure 2) as 
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a calculated one. The calculated flexural stress σF is determined on the stressed side of the 
lobe, according to the following formula, as the difference in tensile and compressive 
stress. 

( ) ( ) ( ) ( )3 3 33 3 3
3 2

33

sin 6 sincos cosm f m fm m
F

f f r fr f

N h hN
σ N

W H l sl s

⎛ ⎞⋅ ⋅ ⋅ ⋅⋅
= − = ⋅ −⎜ ⎟⎜ ⎟⋅⋅⎝ ⎠

α αα α
 (15) 

where Wf is the section modulus at bending, Hf is the sectional area of the lobe, hf is the 
distance from the point of application of force N3 to the dangerous section, sf is the width 
of the lobe. 

Let us see how the values of flexural stress change from the top point of the lobe 
(point P in Figure 2) to the assumed dangerous (weakest) section. Let us consider the 
expression for determining the flexural stress as the function of hf. We take into 
consideration that the thickness of the lobe varies along its height as well  
sf = 2 · hf / tan(α3m). The height of the lobe varies from 0 to the value hfmax, which is 
determined according to the dependence: 

( )max 3
3

12
cosf s

m
h A r ⎛ ⎞= ⋅ − ⋅⎜ ⎟

⎝ ⎠α
 (16) 

The expression to determine the flexural stress (15) can be finally written as follows. 

( )
( ) ( )( )3 3 2

3
3

sin
3 tan 1

2
m

F f m
r f

N
σ h

l h
⋅

= ⋅ −
⋅ ⋅

α
α  (17) 

The results of the calculations with the above mentioned geometric parameters of the 
transmission and its loading parameters are shown in Figure 4. 

Figure 4 Graph of changes in flexural stress depending on height of application of reaction 

 

The maximum flexural stress occurs at the top of the lobe, which may cause its breakage. 
At the same time, the height of the lobe section hfmin, where the calculated stress exceeds 
the allowable ones is negligible (Figure 4). This section can be cut off during 
manufacture. The height of the cut-off section is calculated by the formula: 

( )
[ ] ( )( )3 3 2

min 3
3

sin
3 tan 1

2
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f m
r F

N
h

l σ
⋅

= ⋅ −
⋅ ⋅
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α  (18) 
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where [σF] is the permissible flexural stress. 
After determining the values hfmin it is necessary to specify the values Кр (formula (1)) 

and the values of all the forces acting in the transmission [formulas (2)–(4)]. 
In addition to the calculations presented, the calculation of normal flexural stress τNs 

of the cage sections located between the slots in the dangerous sections, where the 
rounding of the slots begin, is made. The force N2 in this calculation is applied in the 
centre of these sections. Also, the screw connections holding the cams are tested for shear 
and key connections are tested for bearing stress. 

Let us see as an example the results of calculations of the stress acting in the TIREs 
parts with geometric parameters given in the explanations to Figure 3, depending on the 
value of the torque on the output shaft. The radius of outer cylindrical surfaces of all 
roller components was assumed to be equal rs1 = rs2 = rs3 = 6 mm. Tempered steel 45 was 
used as the material for manufacturing the cams, the cage and the roller components 
[yield strength σt = 360 MPa; Ivanov and Finogenov (2006, p.54), Table 1]. The periodic 
operation mode with occasional peak overloads was examined. The lubricant was the 
consistent substance (a mixture of graphite and semi-synthetic oil with hypoid additive), 
put during the assembly of reducer. We take the friction coefficient f = 0.05, subject to 
rolling and slipping. 
Table 1 Values of stresses and parameter hfmin (see online version for colours) 

М2, Н·м σs, MPa τN · MPa σHmax · MPa τNs · MPa** hfmin · mm 

50 16.8 8.0 785.5 29.6 0.8 
55 18.5 8.8 823.9 32.6 0.8 
60 20.2 9.6 860.5 35.5 0.9 
65 21.8 10.4 895.6 38.5 1.0 
70 23.5 11.2 929.4 41.5 1.1 
75 25.2 12.0 962.1 44.4 1.2 
80 26.9 12.8 993.6 47.4 1.2 
85 28.6 13.6 1,024.1 50.3 1.3 
90 30.2 14.4 1,054.0 53.3 1.4 
95 31.9 15.2 1,083.3 56.3 1.5* 
100 33.6 16.0 1,111.2 59.2 1.5* 

Notes: *The increase of hfmin to more than 1.4 mm is not advisable, as the value of the 
parameter Kp decreases significantly, and the normal reactions in the transmission 
increase. 
**The flexural stress in the material of the cage between the cage slots was 
determined as the ratio of the maximum bending moment equal to 0.5 · N2 · lp  
(lp is the length of the cage slots without rounding) to the section modulus, which 
depends on the diameter and the design of the roller bushing which is in contact 
with the cage. 

The permissible bearing stress [as for movable key connections [Ivanov and Finogenov, 
(2006), p.94] was [σs] = 25 MPa. The permissible shear stress was determined by the 
formula [τN] = 0.2 · σt = 78 MPa, according to Ivanov and Finogenov (2006, p.55)  
(Table 1), as for the bolts placed without clearance at variable load. The permissible 
contact stress was calculated according to the expression [σH] = 2.8 · σt = 1,008 MPa, as 
for the gears during the periodic operation mode with short-time single overloads. The 
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permissible flexural stress was also determined by the calculation method for gearings 
described in Reshetov (1989, p.186): [σF] = 2 MPa. 

Table 1 depending on M2, gives the calculated values of the maximum bearing σs and 
shear τN stress acting on the rollers, the calculated values of the maximum contact stress 
σHmax and of the maximum normal flexural stress acting in the cage τNs, and those of the 
minimum required height of shear of the lobes of the outer cams to assure flexural 
resistance. The cells where the strength condition according to the corresponding 
criterion is violated are marked with inverse colour. 

To check the kinematic characteristics of the transmission a prototype reducer was 
developed (Figure 5). The casing diameter is 82.0 mm, the prototype length is 155.0 mm, 
the transmission ratio is 5.0. The reducer underwent a laboratory bench run with the 
engine power of 1 kW. 

Figure 5 Reducer prototype, (a) roller mechanism (b) reducer assembly 

  
(a) (b) 

5 Conclusions 

The obtained expression (1) for determining the number of the rollers involved in the 
load transfer makes it possible to estimate the forces acting on the main links of the 
transmission depending on the geometric parameters. For the transmission with the 
parameters: R = 20 mm, A = 10 mm, with the roller radius rs ≤ 3 mm and the number of 
periods Z3 increased from 1 to 5, the force N2 is reduced almost by half. However, when 
the radius rs is increased to 5 mm, and Z3 = 3, the optimum of the force function (its 
minimum) is observed, the further increase of the number of periods of the race of the 
outer cam causes a sharp increase (nearly double, when Z3 = 6) of the force value N2, 
which reduces the load capacity of the transmission. 

The roller radius increase definitely increases the values of the forces in the 
transmission, for large values of the number of periods (Z3 > 4) this increase is more 
marked. Thus, for the TIREs designed to transfer power of up to 2 kW with the maximum 
casing diameter of up to 100 mm, the recommended value of transmission ratios is in the 
range from 1 to 5. 

It was found that unlike the transmissions with solid rolling elements (Lehmann, 
1981; Terada et al., 2007; Bara, 2006; Ignatishchev, 1983; Nam et al., 2013; Pashkevich 
and Gerashchenko, 1992), in the proposed design of the transmission with compound 
(three-piece) rollers the outer diameter of the rollers is determined by the bearing stress 
acting in the bushing-rod contact of the roller (Table 1). The next most important 
criterion is contact strength of the transmission parts. Let us express the parameter kst 
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from the condition of compressive strength [formula (6)] by replacing the actual bearing 
stresses σs2 by their allowable values [σs]. By substituting the maximum permissible value 
of the force N2, determined by the criterion of contact strength, into the resulting 
expression after the transformation we obtain kst = 1.363.10–5 · [σH]2 / [σs] = 0.55. 
Provided that kst > 0.55 (the diameter of the roller rod increases relative to the outer 
diameter of its bushings) the criterion of contact strength will be the main one. The 
flexural and shear stress calculations of the transmission parts are made as checking ones. 
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