УДК 519.1

ТРИ ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ ГРИНБЕРГА

А. Ю. ЭВНИН

ФГАОУ ВО «Южно-Уральский государственный университет (Национальный исследовательский университет)» Челябинск, Россия

Теорема Гринберга [1] даёт необходимое условие того, чтобы граф был одновременно гамильтоновым и планарным. Несмотря на её простоту и эффективность при решении различных задач, она практически не отражена в русскоязычной учебной литературе. Мы приведём три различных доказательства этой теоремы, последнее из которых доступно рядовым школьникам.

Теорема [Э. Гринберг, 1968 г.] Пусть G – плоский гамильтонов граф с n вершинами, C – гамильтонов цикл в этом графе, f_k – количество k-угольных граней внутри C, а g_k – количество k-угольных граней вне C (для каждого k), тогда

$$\sum_{k=3}^{n} (k-2)(f_k - g_k) = 0.$$
 (1)

Доказательство. Будем называть грани графа, лежащие внутри C, внутренними, а вне C – внешними. Установим сначала равенство

$$\sum_{k=3}^{n} (k-2)f_k = n-2.$$
 (2)

Назовём рёбра графа, не входящие в гамильтонов цикл C, хордами.

1-й способ (индукция). Индукция по числу хорд. База индукции: хорд нет, граф представляет собой цикл. Тогда $f_n=1,\ f_k=0$ при k< n, и равенство (2) очевидно.

Посмотрим, что происходит с величиной $\sum k f_k - 2 \sum f_k$ при добавлении новой хорды. Сумма $\sum k f_k$ представляет собой суммарный периметр всех внутренних граней. Проведение новой хорды увеличивает эту величину на 2. В свою очередь, $\sum f_k$ — общее количество внутренних граней. Новая хорда делит одну из граней на две грани и увеличивает количество

граней на 1, удвоенная сумма увеличивается на 2. Таким образом, величина $\sum k f_k - 2 \sum f_k$ остаётся неизменной — равной n-2.

2-й способ (с помощью формулы Эйлера). Рассмотрим плоский граф G', получающийся из G удалением рёбер, не входящих во внутреннюю грань. В нём n вершин. Число его рёбер и граней обозначим соответственно через m и f. Заметим, что $\sum kf_k = 2m - n$. Действительно, в вычисляемой сумме ребро, не входящее в C, учитывается один раз, а все остальные по 2 раза. Кроме того, $\sum f_k = f - 1$ (исключаем внешнюю грань). Подставив найденные выражения в (2), получим

$$\sum kf_k - 2\sum f_k = 2m - n - 2(f - 1) = n - 2.$$

Последнее равенство равносильно n-m+f=2 — формуле Эйлера для графа G'.

3-й способ (с помощью элементарной геометрии). Рассмотрим укладку графа G' в виде выпуклого n-угольника. Хорды будут изображаться непересекающимися диагоналями. После умножения обеих частей равенства (2) на число π получим справа сумму углов n-угольника, а слева сумму углов по всем многоугольникам, на которые непересекающиеся диагонали делят n-угольник. Очевидно, суммы совпадают.

Внешние и внутренние грани можно поменять местами. Поэтому наряду с (2) также имеем

$$\sum_{k=3}^{n} (k-2)g_k = n-2.$$
 (3)

Тождество Гринберга (1) получается вычитанием из равенства (2) равенства (3). ▶

В заключение приведём задачу на применение формулы Гринберга.

Задача. Докажите, что граф G с 46 вершинами, изображённый на рис. 1, не является гамильтоновым.

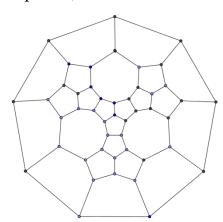


Рис. 1. Граф *G*

Доказательство. В графе G есть 9-угольная грань, три 8-угольных грани, а остальные грани 5-угольные. В обозначениях из формулировки теоремы Гринберга $f_5 + g_5 = 21$; $f_8 + g_8 = 3$; $f_9 + g_9 = 1$. В сумме $\sum_{k=3}^{n} (k-2)(f_k - g_k)$ все слагаемые, кроме трёх (при k=5, 8, 9), равны нулю. Из ненулевых слагаемых два делятся на 3 (при k=5 и 8), а одно (при k=9) не делится на 3. Поэтому указанная сумма не делится на 3, в силу чего не равно нулю, что противоречит (1).

Подборку задач на теорему Гринберга можно найти в [2].

СПИСОК ЛИТЕРАТУРЫ

- 1. **Гринберг, Э. Я.** Плоские однородные графы степени три без гамильтоновых циклов / Э. Я. Гринберг // Латв. матем. ежегодник. 1968. T. 4. C. 51–58.
- 2. **Эвнин, А. Ю.** Теорема Гринберга и её применение / А. Ю. Эвнин // Математическое образование. -2018. № 1 (85). C. 60–65.

