УДК 541.13: 621.357 ЭЛЕКТРОХИМИЧЕСКОЕ ВЫДЕЛЕНИЕ СОЕДИНЕНИЙ ВАНАДИЯ ИЗ ЗОЛЬНЫХ ШЛАМОВ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

И. М. ЖАРСКИЙ, И. И. КУРИЛО, Е. В. КРЫШИЛОВИЧ, И. В. БЫЧЕК Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» Минск, Беларусь

Потенциальным источником вторичного ванадийсодержащего сырья в Республике Беларусь являются твердые продукты сгорания углеводородного сырья на тепловых электростанциях (ТЭС), концентрация ванадия в которых в 10–100 раз превышает его содержание в традиционном рудном сырье – титаномагниевых рудах. Согласно данным РУП «Бел НИЦ «Экология» объемы накопления ванадийсодержащего шлама в Республике Беларусь на начало 2012 года весьма существенны и составляют 10391,26 т.

Целью работы было изучение возможности использования электрохимических методов на стадии выщелачивания соединений ванадия в процессе переработки зольных шламов ТЭС.

В качестве объекта исследований использовали зольные остатки ТЭС, содержащие 4,56 % ванадия в пересчете на V_2O_5 . В качестве фонового электролита электрохимического выщелачивания использовали растворы HCl. Анодом служил полый графитовый цилиндр, плотно прилегающий к стенкам электролизера; катодом — железная пластина, помещенная в чехол из хлориновой ткани и закрепленная на катодной штанге в центре электролизера. Соотношение площадей анода и катода составляло 5:1. В электролизер помещали золу при соотношении твердой и жидкой фаз 1:10. Электролиз проводили при перемешивании в течение 30 минут.

Установлено, что с увеличением плотности тока общая потеря массы золы уменьшается, что связано с увеличением выхода по току водорода. В процессе электролиза на катоде параллельно с процессом выделения водорода протекает восстановление железа, меди, никеля и цинка. Подщелачивание в прикатодной области приводит к усилению процессов гидролиза и формированию на катоде дендридообразных осадков гидроксидов и основных солей металлов, присутствующих в электролите. Определение методом EDX элементного состава осадков, полученных в катодном пространстве электролизера, показало, что содержание ванадия в них зависит от плотности тока и в пересчете на V_2O_5 может достигать 40 %.

Установлено, что проведение процесса окислительного выщелачивания при анодной плотности тока 4 A/дм^2 позволяет увеличить степень выделения ванадия до 60 %, что на 10--15 % больше по сравнению с химическим выщелачиванием в солянокислых окислительных средах. Содержание ванадия в продукте, выделенном из растворов выщелачивания в процессе термогидролиза, в пересчете на V_2O_5 составляет около 70 % (мас.).